<u>核磁気共鳴装置 (NMR) (ECA-500)</u>

操作手順書

Delta 4 一般ユーザー用

横浜国立大学機器分析評価センター

作成日	
手順書 No.	
作 成	承認

※ 本書はJEOL RESONANCE㈱が作成したマニュアルを一部改編したもので す。個人で利用する場合を除き、不特定多数への公開を禁じます。

目次

核磁気	共鳴装置(NMR)(ECA-500)	1
1.1	ログインからコネクトまで	3
1.2	サンプルのセット	5
1.3	サンプルの設定(サンプル定義)	7
1.4	1H 測定(マニュアル測定) 1	0
1.5	1Hデータ処理 (Delta 5) 1	7
1.6	ポインターバー説明 (Delta 5) 2	6
1.7	13C 測定(マニュアル測定) 2	7
1.8	DEPT 測定 2	7
1.9	COSY 測定 2	8
1.10	COSY データ処理 (Delta 5) 2	9
1.11	ワンボタン測定 3	2
1.12	ベーシック測定(1H)の流れ 3	5

1.1 ログインからコネクトまで

注意! 本システムにおいて文字や数字を入力するときは、必ず入 力する欄にマウスカーソルを置き、キーボードから入力すること。 カーソルが外れると、ロックされて入力できない。

■ ログインし、分光計に接続する

- ① [未起動なら] ワークステーション (PC) の電源スイッチをONにする。
- ② [未起動なら] windowsのログイン画面にて、Ctrlキー、Altキー、Deleteキーを同時に押す。
 ユーザー名とパスワードを聞かれるので、
 ユーザー名:delta パスワード:delta (●●●●表示になる)
 と入力し、ログインする。
- ③ [未起動なら] ログイン完了後、デスクトップ上のDeltaアイコンをダブ ルクリックする。

補足: 通常は、①~③までは必要ない。もし電源などが切れていた場合のみ以上の操作を行う。
 補足: Deltaコンソールは、画面奥に隠れている場合がある。コンソールを何個も開くと動作に影響が出るので、一つだけ開いた状態にすること。

④ [Deltaコンソール] ウィンドウが開く。

⑤ 上図の囲み部分のアイコン b をクリックすると、 [Spectrometer Control] ウィンドウが開く。

 ⑤ [Spectrometer Control] ウィンドウに表示されている分光計の名前 ECA-500を選択する。

- ⑦ Connectボタン ^{Connect}を押して、No Current Link が Connect scc(黄色) に なったことを確認する (ECA500をダブルクリックでも可)。
- ⑧ Sampleボタン Sample をクリックして、 [Sample] ウィンドウを開く。Sample StateがE (Eject) 全になっていることを確認する。

🔗 Sample:	🔗 Sample: scc — 🗆 🗙						×	
Options								
Field	d Strength		Heliur	n		Nitr	ogen	
11.7	473579[T]		88[%	1		64[%]	
San	uple State		Spinne	r		Tempe	erature	
) Probe ID Slot	2756 No Changer	Current Target	0[Hz]		/ Curren Target		23.2[dC 25.0[dC]	
CYCLOHE D2O DMF-D7 DMSO-D6	Solvent ORM-D XANE-D12		Gain Level		ock Contr			

1.2 サンプルのセット

- 測定サンプルをSCM(超電導磁石)へセットする
- あらかじめ、試料管をキムワイプ等で拭いておき、ホルダに差し込んだと きに汚れが残らないようにしておく。
- 2 5 m φ サンプルロータ&ホルダに試料管を装着する。
 注意: サンプルロータ&ホルダは、通常の測定では5 m φ を使う。
 - 1 ロータからホルダを引き出す(下に伸ばす)。限界まで引き出した後、 ホルダを半回転させ、0-リングの弛みを直す。

2 サンプルゲージにロータをセットする。

試料管をサンプルゲージに挿入

3 ロータに試料管を差し込み、サンプルゲージで試料の高さをあわせる。

注意: 試料管をロータにセットしただけでは、試料管の底がサンプ ルゲージのストッパから少し浮いてしまう。高さを合わせた後、試料 管を半回転させて、0-リングの弛みをとることで、管とストッパがきち んと接触するようになる。

注意: 液量が少ないとき(液高4cm以下のとき)は、ゲージの最深の 底面ではなく、コイルの中心線に合わせる。この場合はシムが合いにく いので、マニュアル設定のグラジエントシムを併用すること。

4 ロータおよびホルダに埃などの汚れが付着していないか目視で確認 し、汚れていたら拭き取るか、エアダスターで吹き飛ばしておく。

③ SCMの試料投入口のフタを外し、エアーが出ていることを確認した後、試 料管をセットしたサンプルロータ&ホルダを真っ直ぐに、ゆっくりと挿入し、 浮上状態にする。

SCMAのセット

注意: SCM内に試料が入っていないことを確認する。

注意: 試料管ガラス単体、ロータ&ホルダ単体、サンプルゲージなどを入 れないこと。

注意: 試料管をつまんで持つと位置合わせがずれてしまうので、ロータ部 分を持つこと。ただし、白黒のラベルの部分は汚れると動作不良の原因とな るので、その部分は素手で持たないようにすること。

1.3 サンプルの設定(サンプル定義)

■ 測定を行うサンプルに対して条件の設定と調整を行う

この操作は、後のマニュアル測定の手順で automatic に設定するか、 またはオート測定を使用すると省略することができる。

- ① [Sample State] のサンプルロードボタン をクリックして、サンプルを 装填する。正しく装填されれば、緑のランプが点灯する。
- ② [Spinner]のONボタンジが押されていた場合、自動的にスピナーの回転が始まる。OFFボタンジが押されていた場合、ONボタンをクリックする。しばらくして安定するとCurrentが15Hz前後になる。 補足: OFFにしたい場合は、OFFボタンを押されている状態にする。

③ [Temperature] において、<u>室温で測定するとき</u>はTemp. OFFボタン

 かうして、

 からして、

 はて、

 などの

 はて、

 などの

 はて、

 などの

 などの

注意: 利用者が担当者の許可なしに利用できる範囲は、<u>室温~50℃</u>まで とする。それ以上、またはそれ以下の温度で測定するときは、温度可変の 講習・説明などを受講すること。

④ [Solvent] において、使用する溶媒を選択する。ABC順に並んでいるが、 リストにない場合は管理者に相談すること。

注意: 通常の測定においては、重水素化溶媒を使用すること。特殊な条件(ノーロック測定、混合溶媒)や二重管などで測定する場合は、不明な 点があれば担当者に相談すること。

⑤ [Lock Control] のオートロックボタン
 ⑥ た変わるまで待つ(手順を省略せずに確認するのが望ましい)。

注意: ここでロックに失敗するときや、ロックシグナル値が小さいとき は、シム状態が悪い可能性がある。User/Systemのどちらかを選択し、シ ムファイルをロード してリセットすると、直ることがある。 ユーザーシム: ユーザーが作成したシムファイル(ファイルを選択) システムシム: 管理者が作成したシムファイル

User Shims 🛛 System Shims 🛛 🛃 🛃

⑥ (A) グラジエントシムを使用する場合(標準)は、[Lock Control]のグラジェントシムボタンをクリックして、赤色または黄色からIDLE(緑)になるまで待つ。左側の鍵無しアイコンには、グラジエントシム後にオートロックをかけないので、ロックを外す特殊測定に限り用いられる。

(B) ロック後にオートシムを選んでかける場合(特殊)は、右下のAuto shimsのプルダウンメニューを長押しクリックし、必要な軸を選ぶ(通常は 「Z1 Z2」を選択する)。赤色または黄色から「DLF (な)」になるまで待つ。 ロックしていない場合(特殊)は、オートロック&シムボタン をクリ ックすると、ロック後にZ1 Z2オートシムがかかる。 _____

グラジエントシムの補足

グラジエントシムを専用コンソールを用いて詳細に行うには、Gradient Shim Toolウインドウから行う。

- ① [Spectrometer Control] -ConfigメニューのGradient Shim Toolを開く。
- ② <u>System Type</u>: Homospoil、<u>Nucleus</u>: 2H(重水素化溶媒を使っている場合)、Solvent:測定する溶媒、<u>X Offset</u>: Calculate(不明な場合)、<u>Recvr</u> <u>Gain</u>: Calculate(不明な場合)とする。
- ③ <u>Scans</u>、<u>Relax Delay</u>、<u>Iterations</u>、<u>ShimSet</u>は好みの設定にする。Iterationsをゼロにすると、収束するまで測定を行う設定になる。
- ④ <u>Range</u>は、サンプルの液量に応じて調整する(4cm以上ならデフォルトのま までよい)
- ⑤ 測定中のモニタを見るなら、Display Field Mapを選択する。
- ⑧ 測定後にロックやシムをかけるなら、AutoLockまたはAutoLock&Shimを選 択する。
- ⑦ すべての設定が終わったら、Startボタンをクリックする。

🙆 Gradient Shir	🔗 Gradient Shim Tool 🛛 🚽 🖂 🗡						
	Operation						
System Type	Homospoil	Grad	ent	Selective			
Nucleus	1H (Proton		2H (D	<mark>)euterium</mark>)			
Solvent	CHLOROFOR CYCLOHEXAN D2O	M-D E-D12					
Scans	4						
X Offset	5[ppm]		Once	Calculat	e		
Recvr Gain	20			Calculat	te		
Relax Delay	[5[s]						
Iterations	<u> </u>						
Shim Set	Z1 Z2 Z3 Z4 Z5 Z6						
Range	22[%]		7[%]	Sav	e		
	Display Field Map						
Lock	AutoLock		AutoL	ock & Shii	n		
St	art		Store	Maps	5		
Calil	brate		E	xit			

1.4 1H 測定(マニュアル測定)

■ 測定条件を選択して測定する

① [Spectrometer Control] ウィンドウに戻り、Expmutボタン Expmnt をクリック して、Open Experimentウインドウ (job) を開く。

② [Open Experiment] ウィンドウのDirectoryから必要な測定ファイルを探 す。(「…」は一つ上のフォルダに移動。)Basicフォルダに主要な測定法 のファイルが入っているが、見つからないときはホームボタンをクリック する。

注意: Backupフォルダには、globalフォルダ(全測定が含まれる初期フ オルダ)に入っているデータがコピーされている。Basicにないものは、 Backupから選択すること。ただし、これらは特殊測定となるため、必要に 応じて担当者に講習や取扱説明について相談すること。

③ 1H核の測定をするときは、1H.ex2を選び、OKをクリックする。

💋 Experiment Too	l: 1H.ex2 — □ ×
File Tools View	Options
	Ad Submit
Header II	Istrument Acquisition Pulse
filename	proton Browse
sample_id	
comment	proton
process	interactive_global 'std_proton_autophase.list']
auto_filter	Ø
auto_gain	Ø
filter_limit	<u>s</u>
force_tune	Ø
save_aborted	Ø
match	0
automatic	Ø
	Ĭ
scc Total Co	liection Lime: 00:01:03

④ Experiment toolウインドウが開くので、適切なパラメータを調整する。

タブ	項目	内容
Header	filename	データ保存名(ほぼ必須)
	auto_gain	レシーバゲインの自動検出(通常ON)
	force_tune	チューニングの強制実行(任意)
	automatic	サンプル調整を自動で行うにはON(任意)
Instrument	solvent	溶媒を選択(最後にした測定から読込)
	recyr gain	レシーバゲイン値の任意設定
	leewi_gain	(auto_gain OFFの場合に設定)
	x_domain	観測核
	x_offset	観測中心
Acquisition	x_sweep	観測幅
	scans	積算回数(任意)
	x_prescans	ダミー積算
Pulse	x_angle	フリップ角度
	relaxation_delay	緩和待ち時間(1scan毎の待ち時間)

注意: たとえばHeaderのautomaticは、globalのファイル(初期のファイル)ではメニューになく、Basicフォルダに移したものだけ追加されている。特殊機能を追加するには、Addボタンをクリックして行う。ただし、 効果のわからないものは使用せず、管理者に確認すること。

注意: force_tune、scans、およびrelaxation_delayは、いずれも測定感度 に影響する。感度が重要な測定は、適切に調整すると時間効率がよいデー タ取得ができる。

【参考】一

- チューニング (force tune) を行った方が良い条件
 - ① ¹³C スペクトルなど、感度の悪い測定をする場合
 - ② 最後にチューニングを実施したときと、測定したい試料の溶媒が異なる場合(誘電率が異なる場合): 特に水系と有機溶媒系では大きく異なる。
 - ③ 高濃度の塩類が入っている水溶液などの場合
 - ④ 温度可変を ON にして、温度が大きく変わる場合

最適な積算回数(scans)の推定方法の手順

- 1. 何かピークの痕跡が見える程度に、適当な回数でスペクトル測定を行う。
- 2. スペクトル全体表示(拡大無し)とし、このときのおよそのノイズ幅 を求める。
- 3. 埋もれた他のピークが見えるためには、ノイズの幅を何分の1(1/n) にしなければいけないか、推定する。
- 4. 1 で設定した積算回数に、n の二乗をかけて設定値とし、本測定する。

補足:

- sample_id は、オートサンプラーで試料管を区別するときに用いるので、通常は空欄にしておくこと。
- auto_filterはデジタルフィルターのことであり、通常は入れること。 filter_limitは、0、4または8とし、通常は変更しないこと。
- <u>auto_gainのチェックを外したとき</u>は、必ずInstrumentタブの Recvr_gainに適切な値を入力すること。測定中に設定されたゲイン値 は、Deltaコンソール画面の履歴、またはSpectrometer Controlウイン ドウに表示されるので、そちらから確認する。
- force_tuneを入れなかった場合でも、測定チャンネルの核種が異なる 設定であると自動的にオートチューンがかかる。
- save_abortedにチェックを入れておくと、測定を中止したときにもデ ータが保存される。

- matchは、Sample設定とExperiment設定の情報(Solvent、Rotationなど)に間違いがないかの自動チェックを行う。チェックを入れると、Que StateがWAITING状態になる(後述)。
- ⑤ Instrumentタブを開き、Solventが正しく設定されているか確認する。

補足: 通常、グラジエントシムをかけたときにSample設定が反映されて いるが、<u>使用していない場合や、jobを作成したタイミングが前後する場</u> <u>合</u>は、手動で変更する必要がある。

⑥ <u>前章の「サンプルの設定」を行っていない場合、Headerのautomaticにチェ</u> ックを入れていることを確認する。すべて終わっていれば外してよい。

補足: グラジエントシムをここで追加するには、FileメニューのGradient shimのチェックをONにし、automaticをONにする(automaticを入れない と、ここのウインドウからでは走らないので注意)。

⑦ Submitボタン Submit をクリックし、測定を開始する(。

このとき、Spectrometer ControlウインドウのQue 🙆 Inf... \times StateがOWNEDであれば自動で測定が開始する。 scc Que StateがWAITINGであれば、右図のInfoウインド Sample proton ウが表示されるので、GoボタンSMEをクリックして required for job 00 040 スタートする。Infoウインドウは一定時間で消える ので、その場合はSpectrometer Control ウインドウか GO らGoボタンをクリックする。 Acknowledge View 測定中のモニタを出すときは、Viewボタン をクリックす 補足:

る。また、測定中のデータを別名で保存する場合は、Copyボタン クリックする(新規ファイルができる)。

補足: 続けて追加の測定を行う場合は、1H測定と同様の手順によって Experimentを追加で用意して加えることができる(詳細は別項も参照するこ と)。Submitすると、Spectrometer Controlウインドウにjobが追加されるの で、内容を確認できる。

- ◆ データの保存名・保存先について
- ☞ ファイル名は、[filename] 一番号で表示される。「一番号」は、後でデ ータ処理が入ると、自動付与されて新しい番号ができる(ファイルを保存 しないで閉じると消える)。したがって、複数のデータに重複したfilename を設定しておくと、混じりあって混乱してしまう可能性があるので注意す ること。Delta 4では、Delta 5と違って、必ずfilenameを変更して測定するこ とが望ましい。
- データファイルの保存先(ホーム)は、 C: users / delta / Documents / files / data

ショートカットがデスクトップにある。Dataフォルダ以下には、研究室フ ォルダを作成して使用する。

Experiment toolウインドウのfilename欄の右にあるBrowseボタン Browse をクリックすると、ファイルの保存先と名前を指定できるので、事前に設定しておくことを推奨する。

【Browseの使い方】

- 1) Browseボタン Browse をクリックすると、Save Collected Deta Toウイン ドウが表示される。
- 2) Directoryから保存するフォルダを選ぶ(「...」は一つ上のフォルダに移

動。)。プルダウンメニューにはいくつか主要なフォルダが入っている が、Dataがホームフォルダに相当する(ホームボタンを押すのと同 じ)。

- 3) <u>フォルダがない場合</u>は、Pathのアドレスの末尾にフォルダ名を入力し、 Create Newボタン をクリックする。このボタンを押さないとフォル ダができず、データがホームフォルダに入ってしまうので、注意するこ
- 4) Nameにファイル名を入力し、OKボタンをクリックする。
- Experimentファイルの保存先(ホーム)は、 C: users / delta / Documents / delta / experiments

experimentsフォルダ以下には、研究室フォルダを新規に作成して保存して もよい。

 Delta 5ではサーバーにデータが保存された後にローカルフォルダに複製保 存していたが、Delta 4では上記のローカルフォルダのみに保存される。した がって、ファイルを削除したときはバックアップがないので注意するこ と。

以下に実際の測定の流れをまとめた。Automatic測定では、実施されていないものが自動的に稼働する。

- a. サンプルのロード
- b. サンプルスピニング

c. Auto Lock

と。

- d. Gradient Shimming (設定した場合)
- e. Fast Shimming
- f. オートチューニング
- g. オートゲイン
- h. 積算
- g. データの表示

終了操作

⑧ 測定が終了したら、Sampleウインドウのサンプルイジェクトボタン をクリックして、サンプルを取り出す。ロックやスピンなどは自動で停止 するので問題ない。

注意 サンプルを取り出した後は、必ず試料投入口にフタをする。 注意 ローターから試料管を取り外す際、試料管を破損しないよう注意す る。固い場合は試料管を回しながらゆっくり抜くこと。また、ローターは 必ずケースに保管する。

- ※ 測定の中止について 測定を途中で中止するときは、Spectrometer Controlウインドウから進 行しているQueを選び、Stopボタン¹⁰⁰をクリックする。
- 不要なウインドウをすべて閉じる。
- Image: Spectrometer Control ウインドウのUnlinkボタン
 Image: Spectrometer Control ウインドウのUnlinkボタン
 Image: Spectrometer Control ウインドウのUnlinkボタン
- 必要なデータを、研究室フォルダまたはセキュリティUSBメモリに保存 し、残りはDataフォルダから削除する。
 注意 セキュリティUSBメモリ以外のUSBデバイスの使用は許可しない。

補足: 基本的にここまででよいが、<u>夜間または土日祝日に使用して次の</u> 利用者がいない場合は、追加としてDeltaシステムを閉じて、Windowsをシ ャットダウンしておく。また、解析用PCもシャットダウンしておく。 シャットダウンするときは、必ずDeltaシステムが停止していることを確認 すること。

12 使用簿に記入して、終了。

1.5 1H データ処理(Delta 5)

● データ処理に関する基本操作

この節では特に注意が無い場合、 のようなアイコンはウィンドウ中ほどのポインターバーのアイコンを指す。また で囲ってある文字は、キーボードのキーを指す。

■[モードの切り換え] 各モードでは、Space キーを押している間は[Zoom]モー ド风に、Ctrl キーを押している間は[Select]モード人に一時的に切り替わる。

■[Y 軸方向の拡大] Y 軸方向に拡大するときは、ポインターバーの Y ゲインの 調整 ズ にしてスペクトルをドラッグして上下させる。また、拡大ツール で スペクトル枠の目盛り部分を使って、XY 軸のみを拡大することもできる。

■[拡大の取り消しと初期化] スペクトルの拡大・縮小を一段階戻したいときは ーキー、初期段階に戻したいときは Home キーを押す。

■[Y 軸表示の最適化] 表示しているピークの Y 軸方向を画面内に収めるよう に調整するなら、キーボードの End キーを押す。

■[スペクトルの移動] 矢印キーを押すことで、スペクトルを左右に移動できる。 スペクトルの移動ツール むを使うこともできる。

```
その他、詳細は1.7 ポインターバーの説明も参照のこと
```


- ② オートアイコンの、自動位相補正アイコン かをクリックする。
- ③ 最も強度の大きいピークを自動検出し、 *φ* Pが設定される。(グレーの縦線が マーカーとして表示される。)
- ④ 細かな位相補正は、位相補正パネルにある数値を変更して行う。最初にP0 を調整し、次にP1を調整する。
- ⑤ プロセスリストの をクリックして位相情報をProcess_Listに登録する。
- ☞ アイコンの場合、P0はスペクトル上の最大強度のピークに設定される。 ☞ ポインターバーの● アイコンで、任意にP0を設定することもできる。
- ☞ Φ0 はP0設定されたピーク周辺の位相補正
- ☞ ●1 はP0から離れたピークに対する位相補正

● リファレンス設定

① ウィンドウを最大化し、1Dプロセッサの右枠にある ▲ オプション パネルを開 く。

- ② X軸基準値の、 のアイコンを押せば、サンプル定義で設定した溶媒の化学 シフト値が自動で入力される。(例:登録した溶媒がクロロホルム-dなら7.24 ppm) また、溶媒がTMS入りなら、 を押せば基準値は0.0 ppmになる。手 動で入力しても良い。
- ③ リファレンス設定を行うピーク位置を拡大する。(拡大はポインターバー ③
- ポインターバー
 を選択する。
- ⑤ ピークの任意の場所をクリックすることで、リファレンス設定が行われる。

注意 クリックは一回だけ押すこと、もし間違って複数回押してしまった ら、Process_List (画面右上) に表示されている二番目以降のReferenceを選 択状態にし、下の アイコンで消去する。

⑥ トレーションをクリックしてリファレンス情報をProcess_Listに登録する。
 注意 これ以降の操作では、トレーションを押さないこと。押すとこの段階まで情報が戻ってしまう。

● ピークピッキング

ポインターバーのアイコンを選択すると、ベースライン付近に4本の線が現れる。緑と赤のラインはノイズライン、灰色のラインはスレッショルドライン、黒のラインはベースラインを意味している。

スレッショルドラインにカーソルを合わせ、ドラックして上下させ、スレ ッショルド値を決定する。

注意 ラインが分かれないときは、ライン上の口(図の〇参照)をクリック することで選択しやすくなる。

- ② オートアイコンの アイコンをクリックすることでピークピックが自動で行われ、ピークトップがスレッショルド値より高いピークをピークとして認識する。
- ③ 任意のピーク及び個別にピーク検出する場合は、 ♥ で選択する。
 注意 このモードでは二つのノイズライン間の外側のピークが検出できる。ノイズライン範囲内のピークを検出するには、ベースラインとノイズラインを再設定する必要がある。

- 例 上の図では、bとcのピークのみ、 ◎で検出できる。aとdは ◎で手動で検 出する必要がある。eとfはノイズラインを再設定しなければ、ピークとして 検出することは出来ない。
- ④ ピークピックされた値を選択する場合には、 ●で選択する。
- ⑤ 選択後に消去する場合はDeleteキーを押す。
- ⑥ ピーク間の J 値(距離)を表示したい場合は、距離を測りたい二つのピークを 選択し、カーソルツールの ■● ボタンをクリックし続けると表示されるプ ルダウンメニューから、[J カップリング[J]]の位置にカーソルを合わせ、ボタ ンを離す。選択されたピーク間のJ値と中間の波長が表示される。

積分

- ① オートアイコンの 「をクリックすることで、自動検出する。
- ② 個別に積分曲線を描く場合には、 「を選択する。
- ③ X軸上で任意の場所をドラッグすることで積分曲線が描かれる。

- ☞ クリックした位置の周辺にすでに積分曲線がある場合などには、積分の追加ではなく、存在している積分区間を選択してしまうことがある。その場合にはAltキーを押しながらクリックすることで、積分区間を選択することなく追加することが出来る。
- ④ 積分曲線の追加と削除
- 1. 追加は「で行う。
- 2. 削除は、積分曲線を選択後(「または」で選択)、Deleteキーで行う。選 択状態の積分曲線は、枠付きと積分値の色が青に変わる。
- ⑤ 積分曲線の分割
- 1. 積分曲線を分割したい場合は、その積分曲線を選択する。
- 2. 積分枠の左上の口付近にマウスカーソルを合わせると、

3. この状態のまま左右にドラッグして、任意の位置で指を離すとカットできる。

⑥ 積分の規格化

1. 任意の積分値を選択する。(「または」)

2.1D Processorウィンドウの右側にある △ オブション を展開する。

3. [積分規格化]へ任意の数値を入力し、Enterキーを押す。

● 処理済データの保存

- ① 1Dプロセッサのプルダウンメニューの [ファイル] を選ぶ。
- ② [別名で保存]を選択し、名前を付けて保存する。
- ③ [データの自動取得]を選択しているので、データフォルダ(マイ ドキュ メント-JEOL-data)にfidデータが入る。タスクバーのエクスプローラーアイ コン を右クリックすると、[いつも表示]の欄からdataフォルダにつなが る。
- ④ fidデータと処理済データを、自分の研究室のフォルダに移動させる。もし くは自分のUSBに保存する。

注意 ピークピッキングや積分処理を行ったデータは、保存しなければ処理 情報が残らない。また、フーリエ変換したデータは、上書き保存するとFID に戻らない。

注意 データファイルの末尾に付く「一〇.jdf」(〇は数字)を消すとファイ ルが開けなくなる。ファイルを閉じている状態であれば、名前の変更で数字 を変えることはできる。

注意 各研究室フォルダに移動されていないデータは、逐次消していくので、 忘れずに移動しておくこと。

● 他フォーマットへのデータ変換

- ① 1Dプロセッサのプルダウンメニューの [ファイル] を選ぶ。
- ② [保存] → [別名で保存] を選択し、ウインドウを開く。
- ③ プルダウンメニューの [ファイル] → [出力フォーマット] から保存した いフォーマットを選ぶ。
- ④ 通常の操作にしたがって、ファイルを保存する。

● データの印刷

- ① 印刷アイコン をクリックすることで印刷オプションが開く。
- ☞ 印刷は表示されている状態が印刷される。
- ② 用紙設定、白黒/カラー、パラメータの有無などを選択して印刷を行う。

● Deltaと各種ソフトの互換性について

※1 Topspinのデータを開くときは、フォルダごと必要。データファイル単体では開くことは出来ない
 ※2 変換が必要

詳しくは、1.8 付録 TOPSPIN 1.3とのデータ互換を参照

1.6 ポインターバー説明 (Delta 5)

項目	内容	備考
Q	拡大	リセット = Homeキー
E 7	スペクトル移動	Yゲイン調整 = Endキー
Ā	ゲイン調整	
₽,	選択	ピークピックや積分曲線などを選択
ø	位相補正	位相補正ツール
	ピーク位置コピー	選択照射で使用
ليار الح	スレッショルド	ピークビック、積分時の閾値設定
	リファレンス設定	オプションパネルと併用
$\textcircled{\label{eq:linear}{e$	ピークピッキング	ケミカルシフト値の描画
£	積分	積分曲線の描画
S	メジャー	スペクトル上にメジャーを描画
+	十字カーソル	スペクトル上に十字カーソルを描画
T,	テキスト入力	スペクトル上にテキスト入力
	添付ファイル(molファイル)	事前に作成したファイルの添付、molファイルのみ
	別枠作成	スペクトルの部分拡大などを別枠表示

ズ ポインターバーはShiftキーやAltキーと組み合わせることで、個別の機能があります。
着分やピークピックで選択する時にCtrlキーを押すことで、選択モードになります。

表示されている最大ピークの強度調整 キーボードの End キーを押す。

現在表示されているスペクトル範囲の最大ピークが,画面内に収まるように縦方向に 拡大・縮小されます。

- 1つ前の状態に戻す
 - ◆ キーボードの キーを押す。

Insert Home Page Up
Delete End Page Down

- 2 このとき、縦方向・横方向ともに、1つ前の状態に戻ります。縦方向だけまたは横方 向だけを、元に戻すことはできません。
- すべてを初期状態に戻す
 - ◆ キーボードの Home キーを押す。
 - すべてが初期状態に戻ります。

=	~~ <u>)</u>	¥_	Back space	Insert	Home	Page Up
te e) [J Enter	Delete	End	Page Down

1.7 13C 測定(マニュアル測定)

測定

- ① Experiment Expant を新規作成する。
- ② Basicフォルダから、13C.ex2を選択して開く。
- ③ 必要なパラメータを変更する。
- ④ Submit Submit をクリックすることで、測定が開始される。

補足:

- 13C測定は感度が悪いので、Force tuneの設定や、scan回数などを適切な設定にすること。
- 1H測定において調整が終わっていれば、automaticのチェックは外してよい。

● データ処理

① 得られたスペクトルに対して処理を行う。

- ☞ 手順は¹H測定と同様である。積分はしない。
- 位相補正
- リファレンス設定
- ピークピッキング

1.8 DEPT 測定

測定

- ① Experiment **Expant**を新規作成する。
- ② Basicフォルダから、DEPT135.ex2を選択して開く。
- ③ 必要なパラメータを変更する。
- ☞ [Pulse] タブ: selection_angle=135[deg] このパラメータを45[deg]、90[deg]、135[deg]に変更できる。
- ☞ [Header] タブの auto gainを外し、 [Instrument] タブのrecvr_gainを13C測 定と同等か少し小さくする(面倒ならauto gainを入れても問題はない)。
- ④ Submit をクリックすることで、測定が開始される。
- データ処理

13Cと同様であるが、位相の向きに注意すること。

1.9 COSY 測定

測定

- ① SampleウインドウのLock ControlにあるGainを1~5程度引き上げておく。
- ② Experiment **Expant**を新規作成する。
- ③ Basicフォルダから、COSY.ex2を選択して開く。
- ④ パラメータを必要に応じて変更する。
 - A) COSYの場合、レシーバーゲインは、事前に測定した1H測定の値から参照して設定した方がよい。
 - B) InstrumentタブのSpin stateはOFFにする。ただし、ロックゲインが低いとロックが外れてしまうので、事前に調整が必要(ロックシグナルが1000程度を推奨)。
 - C) 事前に1H測定し、任意の範囲(シグナルが見える範囲)に拡大して観 測中心と範囲を求める。中心にはT字のゲージがあるので、それを目安 にする。求めた値は、AcquisitionタブのX_offsetとX_sweepに入力する。
 - D) 積算回数をAcquisitionタブのScansに入力する。

補足: (C)については、ワンクリックで設定する方法もあるが、その詳細は、据付のチュートリアルマニュアルを参照すること。

- ⑤ Submit をクリックすることで、測定が開始される。
- ☞ その他の2次元測定は、ベーシックな部分では同じである。ただし、使用 するパルスプログラムによっては注意を要する測定もある。詳しいことが わからない場合は、担当者に相談すること。

1.10 COSY データ処理(Delta 5)

- 高分解能データの貼付
- 測定が終了すると下図が表示される。
 か付けウィンドウを表示させる。

no Jata	energite-1 att			EDB	53	
ファイル オク	われ) 新地理 (14)	パウ開設 開設算法 (後地理·洗扒/印刷等 解析2~8	し 補助ウール		
1			🗞 10 🔣 🗲	6 E 4		
01		+ 010+	T.80 04		-	100
10					ファイル オブション レボート 投影 スライス 原開 データ処理 データ表示 解析ツール 補助ツール データ操	作 レイアウト
10 20			1.			8 8
9			1 20	- e -	Project Y M A MARAA	
20						
7.0 6.1					4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-
8.0					s participation of the partici	E
I	8.0 7.	0 6.9 5	.0 4.0 3.0	2.0 1.0	► ⁻ .1	0.2 0.4
XII	parts per Million : 1H				1 X : parts per Million : 1H	abundance

nDプロセッサと2Dビューワウィンドウ

- ☞ 標準状態では投影データが貼り付けられている。
- ② 2Dビューワウィンドウの¹ アイコンをクリックする。 (アイコンが凹む)
- ③ プルダウンメニューの [レイアウト] ⇒ [高分解能データ貼付] ⇒ [両軸 のスライスウィンドウに貼付] を選択する。

高分解能データの貼付

- ☞ HMQCなど¹H観測の¹H-¹³C二次元の場合は、X軸に¹H、Y軸に¹³Cの高分解能 スペクトルを貼り付ける。
- ④ マウスカーソルが指マークに変化する。
- ⑤ 1次元の¹Hスペクトルを選択する。

 ⑥ プルダウンメニューの [レイアウト] ⇒ [1D表示] ⇒ [X軸: スライスウ ィンドウを表示] を選択する。

スライスウィンドウの選択

- ⑦ プルダウンメニューの [レイアウト] ⇒ [1D表示] ⇒ [Y軸: スライスウ ィンドウを表示] を選択する。
- ⑧ 表示されている2Dビューワに高分解能データが張付く。

● 等高線表示の変更

2Dビューワのスペクトル上で、マウスを右クリック(長押し)する。
 表示されるメニューから[等高線調整ツール]を選択する。(¥キー)

等高線調整ツールの読み出し

③ 等高線調整ツールを使用して、適切な表示を行う。

- 2Dデータのリファレンス設定
- 2Dスペクトルと高分解能スペクトルの信号位置がずれた場合の位置合わせ 方法である。
- ネイティブスケールの場合はこの操作は不要である。
- ① 1次元の高分解能スペクトルを貼り付けた、2Dビューワのプルダウンメニューから [補助ツール] ⇒ [ジオメトリツール] ⇒ [リファレンスのコピー] を選択する。

		💋 化学シフト基準	ioal - 📃 🗖 🛛
/ 補助ツール データ操作 レイアウト		データを選択	
■計算機 ► パラメータフィルタ	<mark>业 砂 砂 砂</mark>	₹ £	コピー元データ
ジオメトリツール ジオメトリツール ジオメトリツール ジオメトリカール ショー ジオメトリカール ジオメトリカール ショー ジオメトリカール ショー ジオメー ジオメー ジョール ジオメー ジョール ショール ジオ ジョール ジョール ショール ジョール ショール ジョール ショール ジオ ジョール ショール ジョール ショール ジョール ショール ジオ ジオ ジェール ショール ショール ショール ショール ジオ ジオ ジョール ショール ジオ ジョール ジョール ショール ショール ジオ ジョール ジョール ジョール ショール シー	表示の関連付け 表示範囲の調整	₹ ₽ ₽	コピー先データ
- 日期律表	リファレンスのコピー 💦 ピックツール	適用軸 X Y	Z A 全軸 取消
サービスマネージャ			

リファレンスコピー

- ② 新たに開いた [化学シフト基準のコピー] ウィンドウで以下の操作を行う。
- 1. ***** ** ** をクリックして基準となるスペクトルを選択する。この場合、2Dビューワに貼り付けたf2側(またはf1側)スペクトルを選択する。
- 2. ²・^{2・ケーッ}をクリックして、対象の2Dスペクトルを選択する。
- 3. 適用軸をクリックする。
- ☞ 拡大がリセットされる。
- 4. 元に戻す場合には、 [取消] をクリックする。

■ 自動テンプレートを使用して測定する。

 「サンプルのセット」までの手順を行い、SCMにサンプルを乗せるところ まで進める。

💋 Automation : scc	– 🗆 X					
File Sample Options						
Filename:						
Comment:						
Slot:	Sample Status EJECTED					
Temp. Set: 25[dC]	Curr. Temp. 23.9[dC]					
Temp. State: TEMP OFF	Lock Status OFF					
Solvent: CHILOROFORMED CYCLOHEXANE-I D2O DMF-D7	CHLOROFORM-D CYCLOHEXANE-D12 D2O DMF-D7					
Notify: Hold						
delta_automation.auto2						
Proton	Presaturation					
Carbon	Proton and Carbon					
Carbon and Dept 135	Carbon and APT					
Edited DEPT	Proton and COSY					
Proton and DQF COSY	Proton and NOESY					
Proton and TOCSY	Hetcor					
Flock	Combination 1					

- ② Spectrometer Control ウインドウのAutoボタン Autoをクリックする。
- ③ 必要事項を入力する。

項目	内容	
Filename	データ保存名(必須)	
Comment	コメント (任意)	
Slot	オートサンプラー用のため不要	
Temp set	温度可変の温度(Temp ONにした場合)	
Temp state	温度可変使用の有無(<mark>任意</mark>)	
Solvent	使用する溶媒(必須)	
Notify	メール送信用(使用不可)	

- ④ 測定のパラメータを自分で変更したい場合は、OptionメニューのAdvanced modeを選択し、ADVANCED に設定しておく。
- ⑤ グラジエントシムを入れる場合は、OptionメニューのGradient Shimmingを選び、必要な項目をチェックする。Gradient Optimizationを入れると「初回またはサンプルを入れ替えたときのみ」実行する。
- ⑥ 測定したい核種やプログラムをメニューから選ぶ。モード設定により、次 の項だけ作業が異なる。
- ⑦ <u>Advanced modeにした場合</u>は、下図のようなメニューが表示されるので、必要に応じて設定を変更する。変更して測定する場合はRun with Changes、変更せずに測定する場合はRun with Defaultsを選択する。

🖉 Set Parameters for Proton				\times
- ØProton				_
Basename:				
🖉 Pr	oton			-
Filename:	proton			
Comment:	proton			
Slot:	<u> </u>			
Solvent:	CHLOROFORM-D CYCLOHEXANE-D12 D2O			
Temperature:	25[dC]			٥I
Temp. State:	TEMP OFF			•
Initialize:	auto_gain force_tune spin_state			J
Printer:	NONE			\$
Run with Change	Run with Defaults Save		Cane	el

補足: その他の詳細を変更したい場合は、据付のマニュアルを参照する こと。

 ⑧ Automation Queueと、Infoウインドウが開く。ただし、Infoウインドウは、 一定時間経つと自動で閉じる。

⑨ 問題なければ、Goボタン の をクリックし、後は全自動で測定が行われる。Infoウインドウが消えていたら、Spectrometer ControlウインドウのGoボタンをクリックする。

補足: オートメーションを起動すると、自動的にQueue StateがWAITING になるので、Goボタンをクリックする必要がある。

補足: オートメーションの場合、Automation QueueからSpectrometer Controlに情報を送っている形となる。そのため、停止するときはAutomation QueueをRemoveして停止する必要がある。

以降の手順は、1H測定と同様に行う。

■ 簡易版として、ベーシックな手順を以下にまとめた。 ① システムが起動していなければ、PCとDeltaシステムを起動する。 ② Deltaシステムにログイン (分光計を選んで、コネクト Connect) する。 ③ Sampleボタン Sample でウインドウを開く。 ④ 試料管をロータにセットし、マグネットに装填する。 ⑤ サンプルをLoad しまする。Spinnerが止まっていればON しの にす る。 ⑥ Solventを選択する。 ⑦ オートロックボタン をクリックして、ロックをかける。 ⑧ グラジエントシムボタン をクリックして、シム調整をする。 ⑨ Experimentボタン Expant からウインドウを開き、Basicフォルダの1Hを開く。 Filenameを設定する。 ⑪ その他、パラメータ(Force tune、Solvent、Scan 等)をセットする。 Submit をクリックし、測定をスタートする。 Submitボタン ① サンプルをEject ④ Deltaシステムをログアウト(アンリンク する。 15 セキュリティUSBメモリを使用し、データを移動する。 ※ 場合により、データ保存後にシステムを必要なところまで停止する。

ベーシック測定(1H)の流れ

16 使用簿に記載する。

1.12