分冊 ④

核磁気共鳴装置 NMR (TOPSPIN) 操作手順書

D TOPSPIN 1.3 処理操作

横浜国立大学機器分析評価センター

作成日	2013年 7月	8日
手順書 No.	NMR	-D-3
作 成	承認	

目次

④ TOPSPIN 1.3 基本操作 2

D TOPSPIN 1.3 処理	D-	1
------------------	----	---

一別冊一

	ICON-NMR 基本操作 (DRX)	
А	ICON-NMR 測定(オートサンプラーなし)	A-1
2	ICON-NMR 基本操作(AV600)	
В	ICON-NMR 測定(オートサンプラーあり)	B-1
3	TOPSPIN 1.3 基本操作1	
С	TOPSPIN 1.3 測定	C-1
4	TOPSPIN 1.3 基本操作 2	
D	TOPSPIN 1.3 処理	D-1
5	TOPSPIN 測定法一覧	
Е	TOPSPIN 測定法一覧	E-1
6	TOPSPIN 2.1 基本操作 1	
F	TOPSPIN 2.1 測定	F-1
7	TOPSPIN 2.1 基本操作 2	
G	TOPSPIN 2.1 処理	G-1
8	ALICE の使い方	
J	ALICE を利用したデータの処理	J-1

フローチャート

	D-1	[A] Window Function
--	-----	---------------------

- D-2 [A] Fourier Transform
- D-3 [A] Phase Correction
- D-4 [A] Axis Calibration
- D-5 [A] Baseline Corr.
- D-6 Peak Picking
- D-7 [A] Integration
- D-8~9 Plot/Print

[A] と書いているものは、Automatic mode のワン クリックで対応できる。

【データセットのコピー】 D-9 Save 【データセットの検索】 D-10 find

【スペクトルの拡大/縮小】 D-11 Toolbar

【等高線の表示】 D-12 Edit contour levels

【projection (投影) スペクトルの貼り付け】 D-13 External projection

- 【二次元スペクトルの切り出し】 D-14 "rser"
- 【二次元スペクトルの位相補正】 D-15 .pk
- 【観測幅や照射位置の確認】
 - D-16 観測中心と範囲を直接求める場合
 - D-17 観測中心と範囲をアイコンボタンで求める場合
 - D-18 観測中心や選択励起周波数をカーソルで求める場合
 - D-19 観測中心からの差(オフセット周波数)を求める場合
 - D-20 xau (自動プログラム)を使用する場合

【選択励起パルスのパルス幅の計算】 D-21

「****」で区切った項目は、特定の条件で行う作業を示す。

<u>前頁の最後まで行なったとして以下説明する。</u> <u>また、二次元NMRの処理は測定法によって若干異なるので、一次元NMRの処理</u> <u>をベースに説明する。</u>

<u>自動処理する場合は、"xaup"コマンドでもよい(ただし動作保証外)。印刷しな</u> い場合は、"ap"でもよい。

D-1 [Guide] Acquisition Guide の To Processing ボタンを押して、 処理のガイドを表示する。

	NMR Data Pro	cessing Guide
	Close	⊖ Automatic mode
	V~~	
I	Open Data Set	\rightarrow S
	* }	Advanced
	Window Function ↓	, M
l	\sim	Peak Picking ↓
	Fourier Transform ↓	<u> </u>
l		Integration ↓
	Phase Correction	
l		Plot/Print
l	Axis Calibration	
	<u> </u>	」 E-mail / Archiv
	Baseline Corr.	
	<	>

- ※ メニューの Processing-Data Processing Guide を選んでもよい。
- ※ ツールバーの ProcGuide ボタンでも同様。
- ※以下の説明は、<u>Automatic modeのチェックを外した状態</u>とする。 チェックを入れるとボタンを押した際に、自動化された操作が選 ばれる。適宜使い分けるとよい。

- D-2 [Guide] 処理したいファイルが開いていない場合は、Open
 Data Set ボタン、Ctrl+o キー、または File メニューの Open
 やアイコンからファイルを開く。
 - ※ 画面左に表示している Browser から、 右のスペクトル表示画面へ、ファイル をドラッグ&ドロップした方が簡単 である(ダブルクリックでもよい)。
 - ※ Browser にカーソルを合わせた後、キ ーボード入力すると、入力した頭文字 にジャンプする。
 - ※ Browser からコマンドラインに戻る ↓ ときは、Esc キーを押す。
 - ※ 複数データが開いているときは、右図の ようにスタック表示される。三角アイコ ンは測定中または最後の測定のリアルタ イム画面を表している。

🔄 Bruker TOPSPIN 1.3 on nmrpc as A	dministrator
File Edit View Spectro	meter Proc
🗋 🚖 🖻 📦 🖨 🗳	1d 3d 🤸 🧸
*2 /2 *8 /8 💠 *X 套	<u></u> ≠ +∠ 🖣 🖪
Browser PFolio Alias	New window 1
DBP_090508 DPT_090427 par-test Sac_090525 1 2 2 3 4	
i i i i i i i i i i i i i i i i i i i	

D-3 [Guide] 測定が終わったら、Window Function ボタンを押して、OK とする。

↓

Ţ

- ※ TOPSPIN では、標準のウィンドウ関数が測定法に応じて登録されて いるので、そのまま OK とすればよい。ProcPars タブ("edp")で編 集してもよい。
- ※一次元では"em"または"efp"コマンドでもよい。

※ 一次元 NMR では、一般に exponential 関数を用いるこ とが多い。

¹H: 0.1 ~0.3 Hz 程度 ¹³C: 1 Hz 程度 四極子核: 必要なだけ

※ ICON-NMR や"zgefp"コマン

ドで測定した場合、この作業は必要ない。

※ 一次元 NMR では、"ft"または"efp"コマンドでもよい。

※ ICON-NMR や"zgefp"コマンドで測定した場合、この作業は必要ない。
 ※ 一般の二次元 NMR では"xfb"コマンドでもよい。

*******(補足)************

下記は ProcPars タブ("edp")で 編集してもよい(詳細は頁末を 参照)。

※ Size of real spectrum SI [pnts] は、2ⁿポイントであり、Time domain size TDの1/2とする。 TDはAcquParsタブで確認で きる。

- ※ ゼロフィリングをする場合は、SI を TD より大きくする。ゼロフィ リングは、デジタル分解能を上げたい場合に用いられる。ただし、 ウィンドウ関数などによって FID の末端をゼロにしていることが条 件である。
- D-5 [Guide] Phase Correctionボタンを 押して、<u>Automatic Phasing</u>を選 び、OKとする。

↓

- ※ "apk"コマンドでもよい。
- ※ 二次元でパルスプログラムに 「PH」が付いているものは位 相補正が必要である。二次元位

Phase correction - apk	X	
Options		
⊙ Automatic phasing		
O Automatic phasing, alternate algo	rithm	
○ Manual phasing		
○ Additive phasing using PHC0/1		
O Automatic phasing, 0th order only		
○ Automatic phasing, 1st order only		
○ Automatic phasing, selected region only		
○ Automatic zero order phasing, selected region only		
○ Magnitude spectrum		
○ Power spectrum		
Required parameters		
0th order correction PHC0 [deg] =	0	
1st order correction PHC1 [deg] =	0	
Left phasing limit ABSF1 [ppm] = 16.503299713134		
Right phasing limit ABSF2 [ppm] =	-4.152486807163	

- 1. Manual phasing を選び OK とする。
- 2. スペクトルの位相が見易いように、適当な大きさにスペクトルを拡大 する。
- 3. 赤い線 (Pivot Point) が表示されている信号の裾を見て、アイコンの 「0」をクリックしながらマウスを上下に動かし、位相を合わせる。

赤い線から最も遠い信号の裾を見て、アイコンの
 「1」をクリックしながらマウスを上下に動かし、
 位相を合わせる。

- 5. Save & Return (右図) でモードを抜ける。
 - ※保存しない場合は、Returnアイコン(右隣)でモードを抜ける。
 - ※赤い線(Pivot Point)を変更したい場合は、カーソルを合わせて右ク リックし、Set Pivot Pointを選択する。

D-6 [Guide] 試料にTMSが入っている場合は、Axis Calibrationボ タンを押して、<u>Automatic calibration</u>を選び、OKとする。

- ↓
- ※ "serf"コマンドでもよい。
- ※ TMS が入っていない場合や、間違ったシグナルに校正された場合は、 Manual calibration で行う。ツールバーのアイコンからでもよい。
- ※ TMS から±1ppm の範囲に TMS 以外の強いシグナルがある場合(シ リコングリース等)は間違ってアサインされるため、Manual calibration が必要である。また、溶媒シグナルでの補正はできないの で、Manual calibration で行なう。

rator	🔄 Axis calibration - cal
r Processing Analysis(d 小 ふ へ 止 」 出 い え 砚 Q Q Q い <mark>品</mark> ← ↔	Options Manual calibration Automatic calibration
st 1 1 C:YNU Center	OK Cancel Help

Solvent	1H shift (multi.)	13C shift(multi.)	H2O/HDO shift
Acetic Acid-d4	11.65	178.99	11.5
	2.04 (5)	20 (7)	
Acetone-d6	2.05 (5)	29.92 (7)	2.84
		206.68 (13)	/ 2.81
Acetonitrile-d3	1.94 (5)	1.39 (7)	2.12
		118.69	
Benzene-d6	7.16	128.39 (3)	0.4
Chloroform-d1	7.24	77.23 (3)	1.55
Cyclohexane-d12	1.38	26.43 (5)	0.80
Deuterium oxide	4.81		
Dichloromethane-d4	5.32 (3)	54 (5)	1.52
Diethylether-d10	3.34 (m)	65.3 (5)	
	1.07 (m)	14.5 (7)	
N,N-Dimethylformamid	8.03	163.15 (3)	3.45
e-d7	2.92 (5)	34.89 (7)	
	2.75 (5)	29.76 (7)	
Dimethyl sulfoxide-d6	2.50 (5)	39.51 (7)	3.3
1,4-Dioxane-d6	3.53 (m)	66.66 (5)	2.4
Ethanol-d6	5.29	56.96 (5)	5.2
	3.56	17.31 (7)	
	1.11		
Methanol-d4	4.87	49.15 (7)	4.86
	3.31 (5)		
Pyridine-d5	8.74	150.35 (3)	4.97
	7.58	135.91 (3)	
	7.22	123.87 (3)	
Tetrahydrofuran-d8	3.58	67.57 (5)	2.42
	1.73	25.37 (5)	
Toluene-d8	7.09 (m)	137.86	0.45
	7.00	129.24 (3)	
	6.98 (m)	128.33 (3)	
	2.09 (5)	125.49 (3)	
		20.4 (7)	
2,2,2-Trifluoroacetic	11.50	164.2 (4)	11.5
Acid-d1		116.6 (4)	
2,2,2-Trifluoroethanol-	5.02	126.3 (4)	5
d3	3.88 (4x3)	61.5 (4x5)	

※ 主要な重水素化溶媒の化学シフト表(軽溶媒ではないので注意)

* Room temp.

Manual calibration で行う場合

- 合わせたいピーク (TMS または溶 媒)を拡大する。
- Manual calibration モードにし、先端にカーソルを合わせて左クリックする。
- 3. TMS または溶媒の化学シフトを 入力する(二次元の場合は、一次 元スペクトルから読み取った化学 シフトを入力する)。

D-7 [Guide] ベースライン補正をする場合は、Baseline Corr.ボタンを押して、Auto-correct baseline using polynomial を選び、 OK とする。

 \downarrow

※ "abs"コマンドでもよい。

- ※積分を取らない場合は、ベースライン補正をしなくてもよい。
- ※ 四極子の多核 NMR の場合、ベースライン補正よりも Window 関数 や後方線形予測 (BLP) の処理で解決した方がよい。
- ※ ブロードな信号はベースライン補正で消えてしまうことがあり、注意が必要である。
- ※マニュアルでベース ライン補正する場合 は、Correct baseline manually で行う。ツ ールバーのアイコン でもよい。

Onlynn		
Options		
○ Correct baseline manually		
Auto-correct baseline using polynomial		
O Auto-correct spectral range ABSF1ABSF2 on	ily	
○ Auto-correct baseline, alternate algorithm		
O Define baseline points for cubic spline correcti	on	
○ Correct baseline using cubic spline		
○ Correct baseline using base_info file		
 Correct baseline using base_info file Correct baseline of the FID 		
 Correct baseline using base_info file Correct baseline of the FID Required parameters 		
 Correct baseline using base_info file Correct baseline of the FID Required parameters Degree of polynomial ABSG (05) = 	5	
 Correct baseline using base_info file Correct baseline of the FID Required parameters Degree of polynomial ABSG (05) = Left limit for correction region ABSF1 [ppm] = 	5 10	
 Correct baseline using base_info file Correct baseline of the FID Required parameters Degree of polynomial ABSG (05) = Left limit for correction region ABSF1 [ppm] = Right limit for correction region ABSF2 [ppm] = 	5 10 0	
 Correct baseline using base_info file Correct baseline of the FID Required parameters Degree of polynomial ABSG (05) = Left limit for correction region ABSF1 [ppm] = Right limit for correction region ABSF2 [ppm] = Baseline points file defining cubic spline = 	5 10 0	
 Correct baseline using base_info file Correct baseline of the FID Required parameters Degree of polynomial ABSG (05) = Left limit for correction region ABSF1 [ppm] = Right limit for correction region ABSF2 [ppm] = Baseline points file defining cubic spline = Baseline info file stored by manual correction = 	5 10 0	

D-8 [Guide] Peak Picking ボタンを押して、Auto-Pick peaks <u>on</u> <u>displayed spectrum region</u>または<u>on full spectrum</u>を選び、OK とする。

- ※ 信号の数が多すぎる場合は、ピークピッキングを行う最低レベルを 縦軸から読み取り、Minimum intensity MI [rel] を入力してピークの数 を減らす。また、Detection sensitivity PC を上げると複雑な分裂のピ ーク数が減少することがある。
- ※ "pps"または"pp"コマンド でもよい。

↓

※マニュアルでピークピッキングする場合は、Define regions / peaks manually, adjust MI, MAXIで行う。ツ ールバーのアイコンでもよい。

rator				
r Processir	na A	∖nal	ysis	; (
id ふふい	1	Г	*	5
	ŝ	₫.	+	+
est 1 1 C:YNU Cent	er			
	_		_	_

🔄 Peak picking - pps	X		
Options			
⊙ Auto-Pick peaks on displayed spectrum region			
○ Auto-Pick peaks on full spectrum			
○ Define regions / peaks manually, adjust MI, MAXI			
○ Auto-Pick peaks in predefined regions (file 'peakrng')			
○ Like 1st option, but peak list with histogram			
○ Like 1st option, but peak list in JCAMP format			
○ Calculate width of currently displayed peak			
Required parameters			
Left picking limit F1P =	16.5033		
Right picking limit F2P =	-4.1524		
Intensity of reference peak CY [rel] =	15		
Minimum intensity MI [rel] =	0		
Maximum intensity MAXI [rel] =	10000		
Detection sensitivity PC =	1		
Fraction of peak height for width calc. [01] =	0.5		
Pick peaks of sign PSIGN =	pos. 👻		
Reference peak selection mode PSCAL =	sreg 🖌		
Region file for PSCAL = sreg/psreg: SREGLST = 1H.CDCl3			
ОК	Cancel Help		

******(補足)***************

Define region / peaks manually で行う場合

- picking を行なうスペクト ル領域を拡大する。
- 2. 右図アイコン(□)をハイ ライト表示(緑)にする。
- ピークが枠内に入るように マウスでクリック&ドラッ グする。
- 4. 必要な部分を繰り返し、終わったら Save & Return
 (○) する。

D-9 [Guide] Integration ボタンを押して、積分を取る。自動で行う場合は、Auto-find regions を選ぶ。マニュアルで行なう場合や編集する場合は、Define integral regions manually を選び、OK とする。

※¹³C 測定(Complete decoupling を行なってい る場合)では行なわない。

 \downarrow

※ Define integral regions manually はツールバーの

lintegrationint	
Options	
⊙ Define integral regions manually	
O Auto-find regions, integrate & display result	
○ Integrate existing regions (file 'intrng') & display result	
O List peaks and integrals (using regions file 'intrng') within the displayed regi	on
○ List peaks and integrals (using regions file 'intrng') of the entire spectrum	
Required parameters	
Integration sensitivity factor ABSL (0100) =	3
Minimum separation between independent integral regions AZEW [nnm] =	0.1
inimitant acpuration between macpenaerin megrar regiona / 21 vv [ppm]	
Integral region extension factor AZFE [ppm] =	0.1
Integral region extension factor AZFE [ppm] = Integral sensitivity factor with reference to the largest integral ISEN (>0) =	0.1
Integral region extension factor AZFE [ppm] = Integral sensitivity factor with reference to the largest integral ISEN (>0) = Degree of polynomial ABSG (05) =	0.1 128 5
Integral region extension factor AZFE [ppm] = Integral sensitivity factor with reference to the largest integral ISEN (>0) = Degree of polynomial ABSG (05) = Left spectral range limit F1P [ppm] =	0.1 128 5 16.50329971313
Integral region extension factor AZFE [ppm] = Integral sensitivity factor with reference to the largest integral ISEN (>0) = Degree of polynomial ABSG (05) = Left spectral range limit F1P [ppm] = Right spectral range limit F2P [ppm] =	0.1 128 5 16.50329971313 -4.15248680716
Integral region extension factor AZFE [ppm] = Integral sensitivity factor with reference to the largest integral ISEN (>0) = Degree of polynomial ABSG (05) = Left spectral range limit F1P [ppm] = Right spectral range limit F2P [ppm] = Scale 1D integrals relative to a reference dataset INTSCL (-1, 0, >0) =	0.1 128 5 16.50329971313 -4.152486807163 1

Define integral regions manually で行う場合

- 1. Integration を行なうスペクトル領域を拡大する。
- 2. 下図アイコン(□)をハイライト表示(緑)にする。
- 3. 積分範囲をマウスでクリック&ドラッグする。
- 積分の基準値を合わせたいシグナルにマウスカーソルを合わせ、右クリ ックする。
- 5. 右クリックメニューの Calibration を選び、New value に希望の積分値を 入力し、OK とする。
- 6. 必要な部分を繰り返し、終わったら Save & Return (○) する。

D-10 [Guide] 印刷する場合は、Plot/Print ボタンをクリックして希望のレイアウトを選ぶ (Ctrl+p キーでもよい)。

↓

Print active window [prnt]: 現在の画面をそのまま印刷

Print with layout – start Plot Editor [plot]: プロットエディターを起動

Print with layout – plot directly [autoplot]: プロットエディター書式で直接印刷 ※ []内のコマンド入力でもよい。

- ※ レイアウトファイルを変更する場合は、LAYOUTを選択する。
- ※ XWINNMR では"xwp"を用いる
- ※ 使い方の詳細は、別途手順書を参照のこと。

Print [Ctrl+P] - autop Options	101 -1	2
 Print active windo Print with layout - 	w [prnt] start Plot Editor [plot]	
OPrint with layout -	plot directly [autoplot]	
Required parameters	s	
LAYOUT =	+/1D_H+pp.xwp 🕑	
Use plot limits	Fill data set list	
 from screen / CY from Plot Editor Re as saved in Plot Editor 	eset Actions ditor	et
	OK Cancel Help	,

【データセットのコピー】

D-11 データセットのコピーは、Save アイコン、Ctrl+s キー、または各コマ ンドで行なう。

Copy data set to a new destination: "wrpa"

→ ファイル名、EXPNO、PROCNO を変更して保存

Save other file – processed data…: "wrp"

→ 同じ EXPNO に新しい PROCNO を作って保存

Save other file – acqu. data…: "wra"

→ 同じファイルに新しい EXPNO を作って保存 (processed data なし)

🔄 wrp					
Options					
○ Copy data set to a new destination					
O Save data s	set in a ZIP file				
◯ Save data s	set in a JCAMP-DX file				
○ Save data of a state	of currently displayed region in a text file				
O Save param	neters as a new experiment				
○ Save digital	as analog filtered data				
Save other	file				
Required para	ameters				
File type =	processed data as new PROCNO				
	processed data as new PROCNO				
	acqu. data as new EXPNO				
	1r/1i as fid				
	Miscellaneous				

【データセットの検索】

D-12 データセットの検索は、"find"
 コマンド、Edit – Find Data メニュ
 ー、または Ctrl+f キーから行なう。

Searching will be perfo marked in the data dire	rmed in all d ctories list b	ata directories elow!	
NAME			
PROCNO			
USER			
Title			
Pulse Prog.			
Dimension		Any	~
Data type		Any	~
Date, from: mm/dd/yy Date, till: mm/dd/yy			
Data directories			
C:\Bruker\TS13 C:\YNU			
OK	Reset ma	ask Cancel	Help

【スペクトルの拡大/縮小】

D-13 スペクトルの拡大と縮小は、主にツールバーとマウスを使って行なう。

Overview ウィンドウを表示するときは、

グリッドを表示するときは、青枠アイコンを押すと、 なし → ppm 間隔で固定 → 表示範囲で固定 → と切り替わる。

ツールバーの使い方

赤い四角で囲ったアイコンは、マウスをクリックしながら上下 左右に動かして操作する。

【等高線の表示】

- D-14 二次元 NMR の等高線表示は、以下のように調整する。印刷の自動処 理を行なう場合は必ず調整すること。
 - 1. 必要な信号が全て見えるように、拡大縮小ツールで**最も低い**等高線の高 さを調整する。
 - Edit contour levels アイコンをクリック する。

- 3. 負位相が不要な場合は Contour level sign を Positive にする。正負の位相が必 要な場合 (DQF-COSY、NOESY 等) は Positive & Negative にする。
- 等高線の密度を Level increment (一段階ごとの倍数) で調整する(数が 小さい方が細かい)。
- 5. Number of levels で等高線の数を指定する。数が少ないとピークトップ が見えにくくなる。Level increment を下げた場合は Number of levels を 大きくするとよい。
- 6. Fillをクリックする (Fillを押さないと適用されません)。
- 7. Apply または OK をクリックする。

🔄 techA_090706 11	1 C:\YNU Cent	ter		
1 1	026756.5	0.	.0	^
2 1	437459.1	0.	.0	1
3 2	012442.7	0.	.0	
4 2	2817419.8	0.	.0	
5 3	944387.8	0.	.0	
6 5	522142.9	0.	.0	
7 7	731000.0	0.	.0	
8 1	0823400.0	0.	.0	
9 1	5152760.1	0.	.0	
10 2	1213864.1	0.	.0	~
Calculation meth Multiply with in Add incremen Contour level sig Positive & Neg Positive Negative	nod ncrement t gn gative	Beelik		
Deselousi	4006756 F	Positiv	e Negative	
Lavel increment	1 400		1020700.0	
Number of levels	1.400		1.000	
	,		Fill Clear	Apply
			ОК	Cancel

【projection (投影) スペクトルの貼り付け】

- D-15 二次元スペクトルに高分解能の一次元スペクトルを投影図 (projection)として貼り付ける場合は、以下のように行う。"edc2"コ マンドで登録してもよい。
 - 1. 二次元スペクトルの上に F2 側、 左にF1 側の投影スペクトルが表 示されている。
 - 希望の投影スペクトル上で右ク リックし、External projection を 選ぶ。
 - スペクトルの場所を指定し、OK する(ブラウザで探す場合は Browse ボタンをクリックする)。
 - 簡易に化学シフト補正 (Calibration)する場合は、まず 一次元スペクトルを開く。
 - 5. ProcPars タブを開き、「SR」の値 を記録する。
 - 二次元スペクトルを開き、一次 元スペクトルで記録した SR の 値を二次元スペクトルの各投影 スペクトル (F2、F1) に入力す る。
 - 精密に化学シフト補正する場合は、一次元スペクトルの読み易いシグナルの化学シフトを 記録し、Manual calibration を行う。

Spe	Spectrum ProcPars AcquF			AcquPars	Title	PulsePro	g Peaks	Integ	
n	S	123	鹡						
Ref	erend	e		R	eference				
Win	dow			SI =		32768	32768		
Phase Baseline Fourier Integration			SF [MHz] = OFFSET [ppm] = SR [Hz] =		500.12	500.1299763 16.551 -23.71			
					16.55				
					-23.71				
		T	HZpPT [Hz] =			0.315264			
Pea	ĸ			W	indow fund	tion			-2
Automation Miscellaneous User		25	WDW =		EM	•			
		LB [Hz] = GB =		0.10					
				0	0				

【二次元スペクトルの切り出し】

D-16 位相合わせや S/N 比の確認のため、二次元スペクトルから一枚の FID スペクトルだけを取り出す場合は、"rser"コマンドを実行する。スペクトルのカラム数を選び、保存場所(通常 999)を指定する。作業が終わったら2dアイコンをクリックする。

【二次元スペクトルの位相補正】

- D-17 二次元 NMR で位相補正する場合は以下のように行なう。
 - 1. マニュアルの位相補正モードにする。
 - 下図のように、F2(横軸)側の右端、左端、 中央付近にある信号に対してそれぞれ右クリ ックし、Add を選択する(線の高さが合って いれば左右は合わせなくても良い)。

3. Rアイコン(右図)をクリックすると、「2」 で設定した 3 箇所の切り出しスペクトルが表 示される。

Phase 2D : St. 200424 41 1 C:YNU Center				
└ • 0 1 B 90 -90 180 ∠ ⊾ H + - = #	Gi J			+ +
pivot = 1				
e Row 774 / 47.7434 ppm				
			·	
•			1	
°,				
() Los Mais Trac Hole and Mais Hole Hole Mais and a Mais and a spectrum and the spectrum and the spectrum and the	4	2	o	[maa]
		i i i i		Le e
e Row 623 / 77.0579 ppm				
	an <mark>a</mark> den ann an a			
N			***	
9	human			
-	\ ·			
Ņ				
4	4	2	0	[ppm
a Row 421 / 116.2738 ppm		1 1 1		
Σ				
•				
<u>,</u>				
7			••••	
ę.				
8 6	4	2	· · · · ·	[ppm

- (最も大きい信号に赤い線が表示されるので、<u>不適切な信号</u>(溶媒など) <u>に合っていたら</u>、適切な信号の位置で右クリックし、Set Pivot Pointを選 択する。)
- 5. 赤い線が表示されている信号を見ながら、アイコンの「0」をクリック したまま、マウスを上下に動かして位相を合わせる。
- 赤い線から離れた信号の位相が合っていない場合は、アイコンの「1」 をクリックしたまま、マウスを上下に動かして位相を合わせる(合って ていた場合は変えなくてよい)。
- 7. Save & Return アイコンを押して画面を戻す。
- 8. F1 (縦軸) 側の位相が合っていない場合は、C アイコンをクリックして スペクトルを切り出し、F2 側と同様に「4」~「7」を行い位相を合わ せる。
- 9. Return アイコンを押して画面を戻す。

【観測幅や照射位置の確認】

- D-18 観測中心と範囲を直接求める場合
 - 1. 求めたい範囲より少し広めにスペクトルを拡大する。
 - 2. グリッドを『表示範囲で固定』(10 のグリッド)にする。
 - 3. グリッドの中心(左右から5本目)にカーソルを合わせ、化学シフトを カーソルガイド(スペクトル左上)から読み取る。
 - 右図アイコンをクリックし、観測幅としたいスペクトルの始点から終点をカーソルで指定する (画面外にカーソルが出るとアイコンが解除される)。

- 5. 表示された化学シフト範囲を読み取る。
- 6. 設定を変更したいデータセットを開く。
- 読み取った観測中心は、"eda"を開いて O1/O2 に直接入力する("o1p" や"o2p"コマンドを実行して入力でもよい)。
- 8. 読み取った観測幅は、"eda"を開いて直接入力する("sw"コマンドを実行して入力してもよい)。
- D-19 観測中心と範囲をアイコンボタンで求める場合
 - ※ この方法は、パラメータファイルが書き換わるため、新たにデー タセットを作った方がよい。
 - 1. 測定したデータセットのコピーを作る ("wrpa"コマンドでもよい)。
 - 2. コピーしたデータを開く ("re"コマンドでもよい)。
 - 3. 求めたい範囲にスペクトルを拡大する。
 - 4. 右図赤枠のアイコンをクリックする。
 - 5. 表示された値を読み取る(Ctrl+CとCtrl+Vでメモ 帳に貼り付けてもよい)。
 - 6. 設定を変更したいデータセットを開く。
 - 読み取った観測中心は、AcquPars タブを開いて SFO1/SFO2 に直接入力 する("o1"や"o2"コマンドを実行して入力してもよい)。
 - 8. 読み取った観測幅は、"eda"を開いて直接入力する("sw"コマンドを実行して入力してもよい)。

- D-20 観測中心や選択励起周波数をカーソルで求める場合
 - ※ この方法は、パラメータファイルが書き換わるため、新たにデー タセットを作った方がよい。
 - 1. 測定したデータセットのコピーを作る ("wrpa"コマンドでもよい)。
 - 2. コピーしたデータを開く ("re"コマンドでもよい)。
 - 3. 求めたい範囲にスペクトルを拡大する。
 - 4. 右図青枠のアイコンをクリックする。
 - 5. 設定したいシグナルにカーソルを合わせ、クリック する。
 - ウィンドウが開くので、O1~O3のうち、 設定したいものをクリックする。

7 E

🗲 🕂

- D-21 観測中心からの差(オフセット周波数)を求める場合
 - ※ この方法は、パラメータファイルが書き換わるため、新たにデー タセットを作った方がよい。
 - 1. 測定したデータセットのコピーを作る ("wrpa"コマンドでもよい)。
 - 2. コピーしたデータを開く ("re"コマンドでもよい)。
 - 3. グリッドを表示範囲で固定する。
 - 4. 赤枠アイコンで ALL リセットする。
 - 5. 中心からの差を求めたいシグナルが見えるように、青枠アイコンでスペ クトルの中心を変えずに拡大する。
 - 6. 緑枠アイコンをクリックし、シグナルから中心までをカーソルの始点ま たは終点とする。
 - 7. 表示された間隔を求め、オフセット周波数のパラメータに登録する。た だし、中心から右側は負、左側は正になる。

- D-22 xau (自動プログラム)を使用する場合
 ※ この方法は、XWIN-NMR でも利用できる。
 - 1. 一次元スペクトルを測定する。
 - 2. 処理データをコピーする ("wrp"コマンドでもよい)。
 - 3. 処理データを開く ("re"コマンドでもよい)。
 - 4. 求めたい範囲の積分を取る。
 - 5. 異種核二次元のときは、多核一次元スペクトルでも同様に 1~4 の作業 を行う。
 - 6. 二次元用データセットを作り、パラメータファイルを読み込む。
 - "edc2"コマンドを実行し、F2(左)と F1(右)に対応する一次元スペクトル を設定する。
 - 8. 同種核二次元は"getlcosy"、異種核二次元で F2 側だけ設定するとき

は "getlinv" 、 F2/F 側を設定するとき は "getlxhco" コマン ドを実行する。

Please specify	/ data sets 2 and 3:	
NAME =	Gluco_090615	Gluco_090615
EXPNO =	1	2
PROCNO =	1	1
DIR =	C:\YNU	C:\YNU
USER =	Center	Center

【選択励起パルスのパルス幅の計算】

- D-23 二次元 NMR を一次元化したスペクトルを測定する場合に利用する選 択励起パルス(ソフトパルス)は、以下のように計算によっておよそ のパルス幅を求めることができる。
 - 1. 選択励起に用いる核のハードパルス幅を求める。 よく調整された装置では、ProsolPars ボタンを押 したときに設定されるデフォルト値でよい。観測 核のハードパルスは、P1 がパルス幅、PL1 が出力 である。
 - "stdisp" プルダウンメニューの Spectrometer Shape Tool を起動する。
 - 3. 用いるソフトパルスを Shapes メニューから選ぶ。

3 on nmrpc as	DRX500			: DRX500
N Shape	s Analysi	s Mani	pulate Options Window He	Ip is Analysis Manipulate Options Window Help
Basic	Shapes		🎚 🕨 🔳 🚭 🚧 📅 solv. td s	d Calculate Bandwidth for Excitation [bandw2]
Class	sical Shap	es '	Burp ·	Calculate Bandwidth for Inversion [bandw2i]
A Adiat	patic Shap	bes '	Gauss	Calculate Bandwidth for Refocusing -My [bandw2ry]
ioe Solid	s Applicat	tion •	Gaussian Pulse Cascade •	Special Bandwidth Calculations
07 Imag 90. 61 Decc	7 Imaging Application + HalfGauss 1 Decoupling Shapes + Hermite		HalfGauss Hermite	Calculate gammaB1max [calcb1mo]
0427	1.0 Tr Seduce +	Calculate gammaB max for Adiabatic Shapes [calcb fadia]		
090615			Sinc	Calculate Bloch-Slegert Shift [bslegert3]
90630			Sneeze ,	Calculate average Power Level [calcpav]
1424	124		Snob ,	Integrate Shape [integr3]
			Vega ,	Integrate Adiabatic Shape [integradia]
			ShapFour	Simulation [simulate]

4. "integr3" Analysis – Integrate Shape をクリックする。

ShapeTool	par-test 1 1 C:\YNU Center [1]		
🗟 🖳 🔏	<mark>と</mark> へれ i 况 🗞 1d 出 🕯		
Gauss integr3			Amplitude
10000.0	Length of pulse [usec]	8-	
180.0	Total rotation [degree]		
11.3	90 deg hard pulse [usec]	8-	
Results			
0.41158 -7.71097	Integ Ratio comp. to square on res. Corresponding difference [dB]	4 -	
45.20687	8-		
update p]	
			Phase

- 5. Length of pulse [µsec] にソフトパルスのパルス幅(マイクロ秒)を設定 する。
- 6. ソフトパルスが何度パルスであるかを入力する(測定法に依存)。
- 7. 90 deg hard pulse [µsec] に(1)で求めたハードパルス幅を入力する。
- 8. 各設定をしたら Enter キーを押して確定する。
- 9. Change of power level [dB]の値を記録し、(1)で求めたハードパルス出力 を足し合わせ、ソフトパルスのパルス出力を求める。
 - 例) PL1 = -3、Change of power level = 50 のとき、ソフトパルス出力は 47 となる (パルス幅は Length of pulse の値)。
- さらに正確に調整するならば、ソフトパルスのパルス幅と出力を用いて 90°パルスを求める。その際、PULPROGを<u>selzg</u>にしてソフトパルスを 設定してから測定を行なう。