分冊 ③

核磁気共鳴装置 NMR (TOPSPIN) 操作手順書

C TOPSPIN 1.3 測定

横浜国立大学機器分析評価センター

作成日	2014年 9月 12日
手順書 No.	NMR-C-4
作 成	承認

目次

③ TOPSPIN 1.3 基本操作1

C TOPSPIN 1.3 測定 C	-1
--------------------	----

一別冊一

	ICON-NMR 基本操作 (DRX)	
A	ICON-NMR 測定(オートサンプラーなし)	A-1
2	ICON-NMR 基本操作(AV600)	
В	ICON-NMR 測定(オートサンプラーあり)	B- 1
3	TOPSPIN 1.3 基本操作1	
С	TOPSPIN 1.3 測定	C-1
4	TOPSPIN 1.3 基本操作 2	
D	TOPSPIN 1.3 処理	D-1
5	TOPSPIN 測定法一覧	
E	TOPSPIN 測定法一覧	E-1
6	TOPSPIN 2.1 基本操作1	
F	TOPSPIN 2.1 測定	F-1
7	TOPSPIN 2.1 基本操作 2	
G	TOPSPIN 2.1 処理	G-1
8	ALICE の使い方	
J	ALICE を利用したデータの処理	J-1

C TOPSPIN 測定

【操作手順】

※ 一段下げて記載しているものは 必須でないもの

C-1	TOPSPIN 起動
C-2~5	サンプル装填
C-6	Data Acquisition Guide
C-7	New Experiment
C-8	"rpar"
C-9	"solvent"
C-10~11	Lock
(C-12	" rsh ")
(C-13	Temperature)
(C-14	[A] Probe Match/Tune)
(C-15	Sample Rotation)
C-16	Shim
C-17	Prosol Pars.
C-18	Acquisition Pars.
C-19	[A] Receiver Gain
C-20	Start Acquisition
C-21~22	サンプル取出し~終了
C-23	To Processing

- コマンド入力する場合は、コマンドラインにカーソルを表示する必要がある (Esc キーでコマンドラインにカーソルが移動する)。
- 同一サンプルに対して複数の測定を行なう場合は、C10~C16 を省略することもできる。
- [A]と書いているものは、Automatic mode によってワンクリックで対応できる。
- DRX500 の BBO プローブで C-14~C-20 を自動化する場合は、"aa"コマンド でもよい。

†↓ 省略可の作業順次実行マニュアル参照

C-2

本書で用いる用語、規則

メニュー … メニューバーの項目から実行する。
" " … コマンドラインからコマンドを実行する。
[Guide] _____ … Acquisition Guide / Processing Guide のボタンを押す。
[BSMS] … BSMS ユニットで作業する。
[Magnet] … 超伝導マグネットで作業する。

BSMS ユニット

<u>DRX300 と DRX500 では若干配置が違う</u>

「****」で区切った項目は、特定の条件で行う作業を示す。

【注意】TOPSPIN のコンソールウィンドウ(下図)は、閉じてはならない。

- TOPSPIN 1.3
 CPR : Path to exp : 'C:/Bruker/IOPSPIN/conf''
 CPR : Path to conf : 'C:/Bruker/IOPSPIN/conf''
 CPR : waiting for FLEXIm license
 CPR : No license FEATURE line TOPSPINI
 found in file 'C:\flexlm\Bruker\licenses\license.dat;c:/flexlm\Bruker/lice
 nses/license.dat'.
 Please order a TOPSPINI license
 according to the TOPSPINI Installation Guide.
 The FLEXIm host ID of this machine is 001a4b3a8272
 If your workstation controls the spectrometer,
- C-1 [起動中なら省略] TOPSPIN を立ち上げる。 ↓
 - ※ TOPSPIN は複数個立ち上げないようにする。

※ XWIN-NMR が起動した状態で TOPSPIN を起動

すると、測定の際に不具合が生じることがある。DRX300 では、必ず XWIN-NMR を終了した状態で起動すること。

C-2 [Magnet] 下図にしたがってスピナーローターに試料管をセットする。

- ※ 温度可変測定をしない場合は、青いスピナーを使う。
- ※ スピナーに差し込む前に、試料管の汚れをキムワイプで拭き取る(キ ムワイプの使いすぎ注意!)
- ※ ゲージのタイプによって取扱が異なる。¹⁾。
- ※ 調節ナットやストッパーは不必要に動かさない。 (厳重注意)位置が変わっていると装置を破損する恐れがある。
- C-3 [Magnet] サンプル装填口(右図)の蓋を外す。 ↓

Ţ

C-4 [BSMS] ①LIFT ON/OFF ボタンを押す。
 ↓
 ※ ボタンを押してから数十秒以内に蓋を外してもよい。

※ 蓋を外し忘れると BSMS ユニットにエラーが出る(STDBY で戻る)。

Bruker TOPSPIN 1.3 on nmrpc as Administra

C-5 [Magnet] 試料管ゲージを外し、ローターを装填口に乗せる。 ↓

※ エアーが出ていることを確認してから乗せること。

- C-6 [BSMS] ①LIFT ON/OFF ボタンを押す。 ↓ ※ ランプが消え、エアーが止まる。
 - ※ 装填音に異常がないことを確認する。
- File Edit View Spectrometer Processing Analysis 🗋 🚔 🖹 😭 🗧 Data Acquisition Guide h/ C-7 $\checkmark = = = - \mathcal{O}$ Spectrometer – Data *2 /2 *8 /8
 Basic/Selective Experiments Ð Browser PFolio A ICON-NMR Acquisition Guide を開く。 B DBP 090 Adjustments DTT 090 Acquisition par-test Sac_090 Setup Sample ※ メニュバーにある AcquGuide 13 Shim control 12 Accessories ボタンでも開ける。 13 Shape Tool [stdisp] 101 ※ コマンドラインで作業する場 102 Acquisition Status Bar On/Off 103

¹ DRX300 は中心から 17 mm、DRX500 は中心から 20 mm でシム調整している。試料によっては変更することもあるが、ボトムライン以下には絶対にしないこと。

合は、この手順を省略してよい。

- ※ 以下の説明は <u>Automatic mode のチェック</u> <u>を外した状態とする</u>。チェックを入れると ボタンを押した際に、自動化された操作が 選ばれる。適宜使い分けるとよい。
- ※ コマンドのヒントは、開いた小ウィンドウ のタイトルや、アイコンにカーソルを合わ せたときのポップアップで確認できる。ま た、メニューに[]で記載されているも のがコマンド名である。

C-8 [Guide] New Experiment ボタンを押してウィン ドウを開き、下記入力後に OK とする。

NAME	=実験のファイル名
EXPNO	=実験番号 1~
PROCNO	=処理番号 1~
DIR	=保存場所(C:¥YNU)
USER	=研究室フォルダ名
Solvent	=溶媒(未入力でも可)
Experiment	=測定法(後で入力でも可)
TITLE	=タイトルコメント (任意)

New				×
Prepare for a ne initializing its NM	ew experiment by o MR parameters ac	creating a new d cording to the se	ata set and elected experim	nent type.
NAME	Sac_090525			
EXPNO	13			
PROCNO	1			
DIR	C:\YNU			
USER	Center			
Solvent				~
Experiment		.qplot1D		~
TITLE				
				•
	ОК	Cancel	More Info	Help

 \downarrow

- ※ "edc"または"new"、Ctrl+n キーでも可。
- ※ 二次元 NMR などを扱う場合、同じ試料は同じファイル名(NAME) にすると作業がしやすい。
- ※ NAME, DIR, USER には、以下の記号を使用すると測定ができない。
 ¥ / : ; . * ? " < > |
- ※ Experiment は、一次元 1H 測定の場合 A.1h、13C 測定の場合 A.13c
 が利用できる。詳しくは応用測定を参照。
- ※ この作業を行う前に予めデータを開いておくと、そのデータと同じ内 容がコピーされる。

- C-9 [Guide] Frequency Routing ボタンは、通常省略してよい。
- C-10 **"rpar"** <u>Experiment を入力していない場合</u>は、**"rpar"**コマンドを実行し、 測定したいメニューを選んで Copy All とする。
 - \downarrow
- ※ "rpar"の後にスペースを空けてパラメータファイル名を入力しても よい。ファイル名を絞り込む場合は、rpar の後にスペースを空けて 「A*」のようにファイル名とアスタリスク(ワイルドカード文字) をつけると、「A」で始まるファイル名が表示される。
- ※「A.」ファイルはよく使う測定をまとめたものであり、一次元 1H 測 定の場合 A.1h、13C 測定の場合 A.13c が利用できる。
- ※ 大文字のパラメータファイルは標準ファイルとなっているが、プロー ブや試料に合わせたものではないので確認が必要。
- ※ <u>パラメータを読み込んだだけでは測定できないことがある。装置を</u> 破損する可能性もあるので、必ず手順通り行なうこと。
- ※ 最後の選択で Copy とすると、測定、処理、印刷、タイトル等に関わるパラメータを個別に選ぶことができる。

grpar: copy param. files from.				
A.13c	A.1h	A.cosygs	A.decp90	A.hmbc
A.hmqc	A.hsqc	A.noediff	A.noesyph	A.noesytp
A.selnogp_gauss	AL27ND	B11ZG	C13APT	C13CPD
C13CPD32	C13CPDSN	C13DE45SN	C13DEPT135	C13DEPT135p
C13DEPT45	C13DEPT90	C13GD	C13HUMP	C13IG
C13MULT	C130FF	C13PPTI	C13RESOL	C13SENS
CBCACONHGP3D	CBCACONHGP3D.2	CBCACONHGPWG3D	CBCACONHGS3D	CBCACONHGS3D.2
CBCANHGP3D	CBCANHGP3D.2	CBCANHGPWG3D	CBCANHGS3D	CBCANHGS3D.2
CCACONHGP3D	CCACONHGP3D.2	CCACONHGS3D	CCACONHGS3D.2	CCANHGP3D
CCANHGP3D.2	CCANHGS3D	CCANHGS3D.2	CCCONHGP3D	CCCONHGP3D1
CCCONHGP3D2	CCCONHGP3D3	CCCONHGPWG3D2	CCCONHGPWG3D3	CCCONHGS3D
CD111ZG	CD113ZG	CL35ZG	CL37ZG	COSY45SW
COSY90SW	COSYCWPHPS	COSYDCPHWT	COSYDQFPHSW	COSYDOFTPSW
COSYGPDFPHSW	COSYGPDFTPSW	COSYGPMFSW	COSYGPSW	COSYGSMFSW
COSYGSSW	COSYPHPR	COSYTPSW	DIPSI2ETGPSI19	DIPSI2GPPH19
DIPSIHSQCF3GPSI3D	DIPSITRETF3GP3D	F19	F19CPD	FHSQCCXF3GPPH
HSQCF3GPPH	GA71ZG	GRADCOSY	H2OSUPCOSY	H2OSUPINV4
12OSUPMLEV	H2OSUPNOESY	H2OSUPROESY	HACAHBCOSYGP3D	HBCBCGCDCEHEGP
HBCBCGCDHDGP	HBHACONHGP3D	HBHACONHGP3D.2	HBHACONHGPWG3D	HBHACONHGS3D
HBHACONHGS3D.2	HBHANHGP3D	HBHANHGPWG3D	HCACOGP3D	HCACOGPJC3D
HCACONGP3D	HCAHBCOSYGP3D	HCANGP3D	HCANINHGP3D	HCBCACONGP3D
HCCCONHGP3D1	HCCCONHGP3D1.2	HCCCONHGP3D2	HCCCONHGP3D3	HCCCONHGPWG3D2
HCCCONHGPWG3D3	HCCCONHGS3D1	HCCCONHGS3D1.2	HCCCONHGS3D2	HCCCONHGS3D3
HCCHCOGP3D	HCCHCOGS3D	HCCHCOSYGP3D	HCCHDIGP3D	HCCHDIGP3D2
HCCHDIGS3D	HCCHECOSGP3D	HCCHETGPLR	HCCOLOCSW	HCCOSW

- C-11 "solvent" <u>Solvent を入力していない場合</u>は、このコマンドを実行し、溶媒 を選ぶ。
 - \downarrow
- ※ 以下の条件に一つでも当てはまる場合はこの操作をすること。
 - ✓ New Experiment を行なったときに Experiment と Solvent を選んで いない。
 - ✓ "rpar"を行なった。
 - ✓ 下記のLock 作業を行なわない(既に行なっている)。

C-12 "lockdisp" Lock ウィンドウを開く。

 \downarrow

Ţ

- ※既に開いている場合は必要ない。
- ※ ステータスバー (下図右) をダブルクリック してもよい。
- ※ 右図アイコンをクリックしてもよい。

C-13 [Guide] Lock ボタンを押してウィンドウを開き、溶媒を選 択する。 +

- ※ 以降の操作の一部は、同一サン プルで異なる測定法を利用する 場合、既に実施したものは省略 できる。
- ※ "lock"コマンドでもよい。
- ※ Lock を行った直後は、完了する まで BSMS ユニットの操作を受 け付けない。

Solvents table	
△ Solvent	Description
Acetic	acetic acid-d4
Acetone	acetone-d6
C6D6	benzene-d6
CD2Cl2	methylenechloride-d2
CD3CN	acetonitrile-d3
CD3CN_SPE	LC-SPE Solvent (Acetonitrile)
CDCI3	chloroform-d
CH3CN+D2O	HPLC Solvent (Acetonitril/D2O)
CH3OH+D2O	HPLC Solvent (Methanol/D2O)
D20	deuteriumoxide
DEE	diethylether-d10
Dioxane	dioxane-d8
DME	dimethylether-d6
DMF	dimethylformamide-d7
DMSO	dimethylsulfoxide-d6
EtOD	ethanol-d6
H2O+D2O	90%H2O and 10%D2O
MeOD	methanol-d4
Pyr	pyridine-d5
THF	tetrahydrofurane-d8
Tol	toluene-d8
	OK Cancel

C-14 "rsh" Lock がかからない場合や分解能が極端に悪い場合は、BSMS ユニットで Lock を外し、rsh コマンドを実行してシムファイルを読み直す。

 \downarrow

- ※ 頭文字にプローブ名(txi、bbo、qnp、bbi)が入っているファイルの うち、現在使用しているプローブと同じものを選ぶ。また、通常は最 も新しいもの(一番上にあるもの)を選ぶ。
- ※標準プローブの場合、ツールバーにある rsh QNP (DRX300) または rsh
 BBO (DRX500) ボタンでも上記と同じ機能。
- ※ DRX300 標準プローブは QNP、DRX500 標準プローブは BBO。

C-15 [Guide] <u>温度コントロールが必要な場合</u>は、Temperature ボタンを押して Edte ウィンドウを開く。

Set max ボタンを押して適切なヒーター上限値の数値を入力する。適切な 値は温度によって異なるため、不明な点は管理者に相談する。

また、Change ボタンを押して温度(K)設定し、Probe Heater を On 状態(右図)にする。

DRX500 は、マグネットに接続されている<u>クーリングエアー</u>のバルブを開ける。

【温度設定値が安定しない場合】

 \downarrow

温度安定後、Self-tune タブを開き、Start self-tune を押し、数分待つ。 (その間、別の作業をしてよい)

PID が適切な値に設定されるので、必要に応じて保存しておく。温度、Set max、Gas flow などが全て一致していれば同じ設定値を入力して Apply PID changes を実行すれば使用できる。設定値を元に戻すときも便利である。

					Edte			
Ette Main display Sample temp Target temp	Monitoring	Corrections 298.0 K	Self-tune	Ram	Main display Adaptative Set cutbac Self-tune Self-tune ta Solf tune m	Monitoring e tune :k rrget temp :	298.10	Self-tune
Probe Heate Gas flow Cooling	r On Off	535 1/h	Set m - + Chang		Proportiona Integral Tim Derivative T	Il Band : ne : Fime :	18.00 25.00 0.00	PID
	He	eater ON			Apply PIC	o changes	Reload P	ID values

- ※ Edte ウィンドウを開くのは、"edte"コマンド、またはステータスバーの温度表示をダブルクリックでもよい。
- ※ <u>50℃(323.15K)以上に温度を上げる場合は、講習の受講が必要。</u>
- ※ <u>スピナーローターとプローブは、それぞれ温度上限/下限があるため、絶対に設定以上の温度設定にしないこと</u>。青いスピナーローターは 50℃以上不可!
- ※ 温度をかけるときは、手順中にスピンを回して測定することを推奨。

- ※ 表示される温度は、設定をしない限り校正されたサンプル温度では ない。物理化学的な測定(配座交換の測定、活性化エネルギーの測定 等)をする場合は注意すること。
- ※ 使い終わったら、必ず Probe Heater を Off にすること。低温ユニッ トを使っている場合は、ユニットも停止する必要がある。DRX500 は、 クーリングエアーのバルブを閉じておく。

ATM probe とは、オートチューニングに対応しているプローブのこと。 matching of non-ATM probe \Rightarrow DRX300 全て、DRX500 の TXI matching of ATM probe \Rightarrow DRX500 の BBO、AV600 の BBFO

それぞれ以下の項目の説明にしたがうこと。

Manual tuning / matching of non-ATM probe [wobb] \Rightarrow C \sim Manual tuning / matching of ATM probe [atmm] \Rightarrow B \sim Auto tuning / matching of ATM probe [atma] \Rightarrow A \sim

- \downarrow
- ※ チューニング操作はスピンを止めて行なう(Automatic tuning は自動 でスピンが止まる)。
- ※ 温度を変えるときは、その温度ごとにチューニングを取る方がよい。
- ※ チューニングは高周波数(¹H)と低周波数(多核)があるが、複数の 核種のチューニングを取るときは、低周波数の核から行う(多核→¹H →多核)。
- ※ 周波数が高いほどチューニングのずれが大きくなるので、DRX500 は できる限りチューニングを取る。
- ※ 二次元 NMR などの S/N を必要とする測定は、必ずチューニングを取る。
- ※ <u>多核 NMR(¹H¹³C 以外)は必ずチューニングを取る。</u>
- ※ Automatic は精度が悪いので、精密に合わせるならば Manual で行う。

A.ATM プローブでオートチューニングする場合

<u>Automatic tuning / matching of ATM probe</u>を選び、OK する。

終了するまで数分待つ(多核測定は高周波側と低周波側の2回調整する)。

B.ATM プローブでマニュアルチューニングする場合

- 1. <u>Manual tuning / matching of ATM probe</u>を選び、OK する。
- 2. 下記の画面が開くので、Tuning の Fine 矢印(<>) で動かし て、下に凸の先端が赤い線に来るように調整する。矢印の 数が多いと変動幅が大きい。
- 3. 次に Matching の Fine 矢印で動かして、最も底が深くなるようにする(通常は下に凸の先端が最下段まで達する)。このとき、赤い線からずれてもよいが、大きくずれた場合はもう一度 Tuning で調整する。
- 4. 最後にもう一度 Tuning で調整する。
- 5. 終わったら File Save position を選択する。
- 6. 多核 (BB) の場合は、Nucleus Selection の 1H を選択し、同様に 1H 側のチューニング/マッチング作業を行う。
- 7. Exit する。

C. non-ATM プローブの場合

※ 詳細は、マニュアルチューニングを参照。※ つまみの位置については別途資料等を参照。

- 1. Manual tuning / matching of non-ATM probe を選び、OK する。
- (画面が見えにくい場合は、Options preferences メニューを実行し、6 行目の Change spectral window color scheme を wobb にして OK する。ただ し、後で戻すこと)
- (信号が画面外に出ているときは、Change wobble sweep width ボタンを 押して、観測幅を倍くらいにする。)
- 画面が表示されたら、プローブの「T」(チューニング)つまみを回して、 下に凸の先端が赤い線に来るように調整する(本体据付のユニットを使ってもよい)。
- 5. 次に「M」(マッチング)つまみを回して、最も底が深くなるようにする (通常は下に凸の先端が最下段まで達する)。このとき、赤い線からずれ てもよいが、大きくずれた場合はもう一度「T」で調整する。
- 6. 最後に「T」つまみを回して、先端が赤い線に来るように調整する。
- 7. 調整したら Stop ボタンを押す。
- 8. 別の核種を調整する必要がある場合は、Switch to next channel/nucleus ア イコンを押す。

C-17 [Guide] Sample Rotation ボタンを押してウィンドウを開き、回転数を入力 して Start rotation を押す。

 \downarrow

Start or stop ro	otation of sample
Rotation f	frequency of sample [Hz]:
Rotation f	frequency of sample [Hz]:

- ※ BSMS ユニットの
 - ③<u>SPIN ON/OFF</u>ボタンを押してもよい。
- ※ 通常は 20Hz とする。
- ※ 測定法によっては回転させなくてもよい。
- C-18 [Guide] Shim ボタンを押してウィンドウを開き、シム調整する。

自動で行う場合

- 1. Auto-shim according "tune" file を選び OK とする。
- 2. 希望のプログラムを選択する。(通常は「z12」)
 - ※ 用意しているプログラムは、頭文字 "z" が z 軸調整であり、数字が 軸の数となっている。例えば、「z12」であれば z1 軸/z2 軸調整をす る。
 - ※ 末尾の文字はプローブ標準シムファイルを読み込むときに使用する (対応していない場合がある)。

BSMS ユニット(p3 参照)で行う場合 ※ DRX500 は、ONAXIS ボタンが点灯していることを確認する。 ※ <u>XY 軸シムを調整する場合は、必ず Sample Rotation を止めて行なう</u>。

※ 標準シムファイルを読むときは、前述の"**rsh**"コマンドを実行し、<u>最</u> <u>も新しい日付のプローブ名がついた標準ファイル</u>を読み込む。

- <u>Z1</u>ボタンを押した後、lockdispモニタを見ながら、ダイヤルを回してロック信号が最大になるようにする。
- 2. <u>Z2</u>ボタンを押した後、同様にしてロック信号が最大になるようにする。
- 3. 1,2を繰り返し、信号が最大になるようにする。
- 4. 最後に <u>Z1</u>軸を調整する。
- 5. ⑧<u>STDBY</u>を押し、⑦<u>Auto Shim</u>ボタンを押す。
 - ※ ダイヤルを回した時の反応が大きすぎる場合は、⑨<u>FINE</u>ボタンを押して微調整にする。
 - ※ 信号が画面から振り切れたら、④<u>Lock Gain</u>ボタンとダイヤルで調節 する。
 - ※ 測定して分解能が悪かった場合は、Z3 軸やZ4 軸を調整する。
 - ※ Sample Rotation なしで測定する場合は、<u>X</u>軸<u>Y</u>軸を調整する。
 - ※ AutoShim の軸を選びたいときは、"tune"コマンドを実行し、 「Autoshim_」という名前がついたファイルを選ぶ。特に、<u>Sample</u> <u>Rotationを行なったままでXY軸のAutoshimがかかっている場合</u>は、 測定中に分解能が徐々に悪化するので外さなければならない。
- C-19 [Guide] <u>Acquisition Pars</u>ボタンを押して AcquPars タブを開き、主要なパラ メータを確認する。

PULPROG =パルスプログラム (NMR シーケンス)

TD	1024 16
----	------------

- NS =積算回数
- AQ = Acquisition time (データの取り込み時間)
- D1 =積算前の待ち時間
- NUC1 =観測核種
- P1 =観測核ハードパルス幅
- PL1 =観測核ハードパルス出力

=観測ポイント数

SFO1 =観測中心 (ppm)

 \downarrow

TD

- ※ P1 や PL1 は、次項の Prosol Pars.の操作で入力できる。
- ※ Acquisition Pars.ボタンは、"ased"コマンドでもよい。
- ※変更が反映されない場合は、入力後に Enter キーを押す。
- ※ 各パラメータの変更は、パラメータ名のコマンド入力でも変更できる。

例) ns 32

- ※ 全てのパラメータを確認する場合は、A アイコンをクリックする ("eda"コマンドでもよい)。
- ※ 処理用のパラメータを確認する場合は、ProcPars タブをクリックする("edp"コマンドでもよい)

- ※ 測定時間の確認は、時計アイコンをクリックする ("expt"コマンドでもよい)。
- C-20 [Guide] Prosol Pars. ボタンを押して、標準パルス出力と幅を 読み込む。

 \downarrow

 \downarrow

※ 一部不具合に対応するため、<u>Acquisition Pars.ボタン後</u>のパラメータ調整より先に実行する。

- ※ <u>測定前に必ずこの操作を行うこと</u>。操作を怠ると正常 に測定できない。また、測定法によっては装置を破損することがある。
- ※ AcquPars.タブのアイコン(右)でもよい。または"getprosol"コマンドで もよい。
- C-21 [Guide] Receiver Gain ボタンを押して、Determine RG value automatically を選んで OK とする。

 \mathbb{M}

- ※ "rga"コマンドでもよい。
- ※ rga が終了すると、タスクバーの Fid Flash の点滅が消える。
- Receiver Gain rg
 Options
 Set RG value manually
 Determine RG value automatically
 OK Cancel Help
- ※ 一部の測定 (DEPT、1D-NOESY、 DQF-COSY 等) は、特殊な RG

の設定方法を行う場合がある。詳しくは管理者に問い合わせること。

- C-22 [Guide] Start Acquisition ボタンを押して、測定を開始する。
- ※ 右図 Start ボタン (▼) でもよい。 🕨 🔳 🎰 ※ "zg"、または"zgefp" コマンドでも よい。

~ 🖶 🖸 🖇

("zgefp"は、"zg""em""ft""pk"の複合コマンドである。)

- ※ "zgefp" コマンドは一次元 NMR のみ利用できる。
- ※ 二次元 NMR は、"zg"で測定中または測定後に、"xfb"でスペクトルが 処理できる。測定中の場合は適切でないスペクトルになるため、必ず 最後まで終了させてから、最終データとすること。
- ※ 測定を途中で終了する場合は、Halt ボタン(■) または Stop ボタンで 停止する(同名のコマンドでもよい)。Halt は測定途中のデータを残 したい場合に用いる。
- ※ 一次元 NMR で、測定終了後に積算を追加したい場合は、必要な積算 回数を設定した後、"go"コマンドを実行する。
- ※ 測定を開始すると測定中の FID 画面がリアル タイムで表示される。このウィンドウは閉じ てもよいが、もう一度見たいならば右図アイ コンをクリックする ("acqu"コマンドでも可)。

※ 測定が終了すると、ステータスバーの Fid Flash の点滅が消え、 Acquisition information が no acquisition running となる。

- C-23 [BSMS] 測定を終了してサンプルを取り出すならば、BSMS ユニットの **AutoShim** ボタン、Lock ON/OFF ボタン、Spin ON/OFF ボタンを消灯さ せて LIFT ON/OFF ボタンを押し、サンプルを取り出す。
 - \downarrow

L

※ 同一サンプルで別の測定をする場合は、新規ファイルの作成から行い、 Lock および Shim を調整は不要である。

- C-24 [Magnet] 測定が全て終わったら、サンプル装填口に蓋をして、温度可変、 プローブ等、利用したものを元に戻す。
 - \downarrow

※ DRX500 のチューニングは元に戻さなくてよい。

- ※ DRX500 の温度可変ユニット(BVT3000)を使っていた場合は、edte 画面を開き、電源を OFF にする(節電のため)。DRX300 の温度可変 ユニット(BVT2000)を使っていた場合は、本体のヒータースイッチ を切る。ただし、サンプルの交換時については停止させる必要がない。
- ※ 特殊試料管、溶液量の少ないサンプル、沈殿のあるサンプルなど、シ ムが著しく異なるサンプルを測定した場合は、C-14 のシムファイル 読み出し作業("**rsh**")を行う。
- C-25 [Guide] 測定が終わったら、リアルタイムの FID 画面が開いたままになるので、×ボタンで閉じる。
- C-26 処理をしない場合は、Topspin を×ボタンで閉じる。確認メッセージが 出るので OK とする。
 - \downarrow

 \downarrow

※ 処理をする場合は、次章の作業を続ける。

※ DRX300 と 500 は、分光器との通信切断が稀にあるため、Topspin は 閉じておいた方が不具合が少ない。

【一次元 NMR の測定後、そのまま二次元 NMR を測定する場合】

- ① 新しいファイルを作る
- ② サンプルにスピンをかけていた場合は、停止させる
- ③ チューニングを取る(1H-13Cなどの異種核測定は、両方の核を取る)
- ④ スピンを止めたことでロックシグナルが下がった場合は、Lock Gain を上げ て、程よい高さにしておく。
- ⑤ パルスプログラムと各種パラメータを設定し、パルス設定を読み込む
- ⑥ 必要に応じて、レシーバーゲインを調整する
- ⑦ 測定する